73
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Direct synthesis of γ,γ-diketophosphonates from pentacovalent 1,2λ5-oxaphosphorane

, ORCID Icon &
Pages 783-788 | Received 20 Sep 2022, Accepted 26 Mar 2023, Published online: 05 Apr 2023

References

  • (a) Engel, R.; Quin, L. D.; Savignac, P.; Iorga, B.; Horsman, G. P.; Zechel, D. L. Synthesis of Carbon-Phosphorus Bonds; CRC Press: Boca Raton, FL, 2003; (b) A Guide to Organophosphorus Chemistry; John Wiley & Sons: New York, 2000; (c) Modern Phosphonate Chemistry; CRC Press: Boca Raton, FL, 2003. (d) Phosphonate biochemistry. Chem. Rev. 2017, 117, 5704–5783. DOI: 10.1021/acs.chemrev.6b00536.
  • (a) Boutagy, J.; Thomas, R. Olefin Synthesis with Organic Phosphonate Carbanions. Chem. Rev. 1974, 74, 87–99. (b) Wadsworth, W. S.; Emmons, W. D. The Utility of Phosphonate Carbanions in Olefin Synthesis. J. Am. Chem. Soc. 1961, 83, 1733–1738. DOI: 10.1021/ja01468a042. (c) Horner, L.; Hoffmann, H.; Wippel, H. G. Phosphororganische Verbindungen, XII. Phosphinoxyde Als Olefinierungsreagenzien. Chem. Ber. 1958, 91, 61–63. DOI: 10.1021/cr60287a005.
  • (a) Turhanen, P. A.; Demadis, K. D.; Kafarski, P. Phosphonate Chemistry in Drug Design and Development. Front. Chem. 2021, 9, 323. (b) Lange, R.; Ter Heine, R.; Knapp, R. F.; de Klerk, J. M.; Bloemendal, H. J.; Hendrikse, N. H. Pharmaceutical and Clinical Development of Phosphonate-Based Radiopharmaceuticals for the Targeted Treatment of Bone Metastases. Bone 2016, 91, 159–179. DOI: 10.1016/j.bone.2016.08.002. (c) White, A. K.; Metcalf, W. W. Microbial Metabolism of Reduced Phosphorus Compounds. Annu. Rev. Microbiol. 2007, 61, 379–400. DOI: 10.1146/annurev.micro.61.080706.093357. (d) Metcalf, W. W.; Van Der Donk, W. A. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products. Annu. Rev. Biochem. 2009, 78, 65–94. DOI: 10.1146/annurev.biochem.78.091707.100215. (e) Clercq, E. D.; Holý, A. Acyclic Nucleoside Phosphonates: A Key Class of Antiviral Drugs. Nat. Rev. Drug Discov. 2005, 4, 928–940. DOI: 10.1038/nrd1877. (f) Engel, R. Phosphonates as Analogues of Natural Phosphates. Chem. Rev. 1977, 77, 349–367. DOI: 10.1021/cr60307a003. (g) Heidel, K. M.; Dowd, C. S. Phosphonate Prodrugs: An Overview and Recent Advances. Future Med. Chem. 2019, 11, 1625–1643. DOI: 10.4155/fmc-2018-0591.
  • (a) Schwan, A. L. Palladium Catalyzed Cross-Coupling Reactions for Phosphorus–Carbon Bond Formation. Chem Soc Rev. 2004, 33, 218–224. (b) Zeng, H.; Dou, Q.; Li, C.-J. Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. Org. Lett. 2019, 21, 1301–1305. DOI: 10.1021/acs.orglett.8b04081. (c) Luo, K.; Yang, W. C.; Wu, L. Photoredox Catalysis in Organophosphorus Chemistry. Asian J. Org. Chem. 2017, 6, 350–367. DOI: 10.1002/ajoc.201600512. (d) Fu, W. C.; So, C. M.; Kwong, F. Y. Palladium-Catalyzed Phosphorylation of Aryl Mesylates and Tosylates. Org. Lett. 2015, 17, 5906–5909. DOI: 10.1021/acs.orglett.5b03104. (e) Bloomfield, A. J.; Herzon, S. B. Room Temperature, Palladium-Mediated P–Arylation of Secondary Phosphine Oxides. Org. Lett. 2012, 14, 4370–4373. DOI: 10.1021/ol301831k. (f) Hirao, T.; Masunaga, T.; Ohshiro Y.; Agawa, T. Stereoselective Synthesis of Vinylphosphonate. Tetrahedron Lett. 1980, 21, 3595–3598. DOI: 10.1016/0040-4039(80)80245-0. (g) Łastawiecka, E.; Flis, A.; Stankevič, M.; Greluk, M.; Słowik, G.; Gac, W. P-Arylation of Secondary Phosphine Oxides Catalyzed by Nickel-Supported Nanoparticles. Org. Chem. Front. 2018, 5, 2079–2085. DOI: 10.1039/C8QO00356D. (h) Xuan, J.; Zeng, T. T.; Chen, J. R.; Lu, L. Q.; Xiao, W. J. Room Temperature C—P Bond Formation Enabled by Merging Nickel Catalysis and Visible-Light-Induced Photoredox Catalysis. Eur. J. Chem. 2015, 21, 4962–4965. DOI: 10.1002/chem.201500227.
  • (a) Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018, 23, 1493. (b) Abell, J. P.; Yamamoto, H. Catalytic Enantioselective Pudovik Reaction of Aldehydes and Aldimines with Tethered Bis (8-Quinolinato)(TBOx) Aluminum Complex. J. Am. Chem. Soc. 2008, 130, 10521–10523. DOI: 10.1021/ja803859p. (c) Liu, C.; Zhang, Y.; Qian, Q.; Yuan D.; Yao, Y. n-BuLi as a Highly Efficient Precatalyst for Hydrophosphonylation of Aldehydes and Unactivated Ketones. Org. Lett. 2014, 16, 6172–6175. DOI: 10.1021/ol5030713. (d) Samanta, S.; Zhao, C.-G. Organocatalytic Enantioselective Synthesis of α-Hydroxy Phosphonates. J. Am. Chem. Soc. 2006, 128, 7442–7443. DOI: 10.1021/ja062091r.
  • (a) Peng, X.; Zhang, X.; Li, S.; Lu, Y.; Lan, L.; Yang, C. Silver-Mediated Synthesis of Novel 3-CF 3/CN/Phosphonate-Substituted Pyrazoles as Pyrrolomycin Analogues from 3-Formylchromones and Diazo Compounds. Org. Chem. Front. 2019, 6, 1775–1779. (b) Shaikh, S.; Dhavan, P.; Pavale, G.; Ramana, M.; Jadhav, B. Design, Synthesis and Evaluation of Pyrazole Bearing α-Aminophosphonate Derivatives as Potential Acetylcholinesterase Inhibitors against Alzheimer’s Disease. Bioorg. Chem. 2020, 96, 103589. DOI: 10.1016/j.bioorg.2020.103589. (c) Wu, L.; Song, B.; Bhadury, P. S.; Yang, S.; Hu, D.; Jin, L. Synthesis and Antiviral Activity of Novel Pyrazole Amides Containing α‐Aminophosphonate Moiety. J. Heterocycl. Chem. 2011, 48, 389–396. DOI: 10.1002/jhet.591. (d) Yu, Z.-H.; Shi, D.-Q. Synthesis and Herbicidal Activity of α-Amino Phosphonate Derivatives Containing Thiazole and Pyrazole Moieties. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 1746–1752. DOI: 10.1080/10426500903251373. (e) Ishimota, M.; Tajiki-Nishino, R.; Fukuyama T.; Tomiyama, N. Rapid Adaptation of Chironomus Yoshimatsui to Acetylcholinesterase Inhibitors (Pyraclofos and Pirimicarb) in a Multi-Generation Study. J. Environ. Sci. Heal. B., 2020, 55, 429–437. DOI: 10.1080/03601234.2019.1708165. (f) Abdelwahed, R. E.; Radhi, A. H.; Awad, H. M.; El Gokha, A. A.; Goda, A. E.; El Sayed, I. E.-T. Synthesis and anti-Proliferative Activity of New α-Amino Phosphonate Derivatives Bearing Heterocyclic Moiety. Pharm. Chem. J. 2021, 55, 231–239. DOI: 10.1007/s11094-021-02404-1.
  • (a) Davidson, R. M.; Kenyon, G. L. Analogs of Phosphoenolpyruvate. 4. Syntheses of Some New Vinyl-and Methylene-Substituted Phosphonate Derivatives. J. Org. Chem. 1980, 45, 2698–2703. (b) Fouqué, D.; About-Jaudet, E.; Collignon, N. α-Pyrazolyl-Alkylphosphonates. Part. II: A Simple and Efficient Synthesis of Diethyl 1-(Pyrazol-4-yl)-Alkylphosphonates. Synth. Commun. 1995, 25, 3443–3455. DOI: 10.1080/00397919508013868. DOI: 10.1021/jo01301a029.
  • Ivanov, B. E.; Kudryavtseva, L. A.; Bykova, T. G. Phosphonomethylation of Malonic and Cyanoagetic Esters. Russ. Chem. Bull. 1969, 18, 807–811. DOI: 10.1007/BF00907048.
  • (a) McClure, C. K.; Jung, K. Y. Pentacovalent Oxaphosphorane Chemistry in Organic Synthesis: A New Route to Substituted Phosphonates. J. Org. Chem. 1991, 56, 867–871. (b) McClure, C. K.; Jung, K.-Y.; Grote, C. W.; Hansen, K. Pentacovalent Phosphorus in Organic Synthesis: A New Route to Substituted Phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 1993, 75, 23–26. DOI: 10.1080/10426509308037355. (c) McClure, C. K.; Jung, K. Y. Pentacovalent Oxaphosphorane Chemistry in Organic Synthesis. 2. Total Syntheses of (.+-.)-Trans-and (.+-.)-Cis-Neocnidilides. J. Org. Chem. 1991, 56, 2326–2332. DOI: 10.1021/jo00007a017.
  • Hwang, J.-M.; Kwon, H.-B.; Lee, S.-B.; Jung, K.-Y. One Pot Synthesis of Variously Substituted γ-Ketophosphonates Using Pentacovalent Oxaphospholenes. Bull. Korean Chem. Soc. 2009, 30, 239–241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.