98
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico molecular docking study and nano TiO2-SiO2 catalyzed microwave facilitated synthesis of new bis(α-aminophosphonates) as potential anti-diabetic agents

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 808-821 | Received 10 Jan 2023, Accepted 12 Mar 2023, Published online: 14 Apr 2023

References

  • Basha, S. T.; Sudhamani, H.; Rasheed, S.; Venkateswarlu, N.; Vijaya, T.; Raju, C. N. Microwave-Assisted Neat Synthesis of α-Aminophosphonate/Phosphinate Derivatives of 2-(2-Aminophenyl) Benzothiazole as Potent Antimicrobial and Antioxidant Agents. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1339–1343. DOI: 10.1080/10426507.2016.1192629.
  • Bagi, P.; Herbay, R.; Varga, B.; Fersch, D.; Fogassy, E.; Keglevich, G. The Preparation and Application of Optically Active Organophosphorus Compounds. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 591–594. DOI: 10.1080/10426507.2018.1547725.
  • Jean-Luc, M. Phosphinate Chemistry in the 21st Century: A Viable Alternative to the Use of Phosphorus Trichloride in Organophosphorus Synthesis. Acc. Chem. Res. 2014, 47, 77–87. DOI: 10.1021/ar400071v.
  • Shameem, M. A.; Orthaber, A. Organophosphorus Compounds in Organic Electronics. Chemistry 2016, 22, 10718–10735. DOI: 10.1002/chem.201600005.
  • Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f.
  • Naydenova, E. D.; Todorov, P. T.; Troev, K. D. Recent Synthesis of Aminophosphonicacids as Potential Biological Importance. Amino Acid. 2010, 38, 23–30. DOI: 10.1007/s00726-009-0254-7.
  • Smith, W. W.; Bartlett, P. A. Macrocyclic Inhibitors of Penicillopepsin. 3. Design, Synthesis, and Evaluation of an Inhibitor Bridged between P2 and P1. J. Am. Chem. Soc. 1998, 120, 4622–4628. DOI: 10.1021/ja973713z.
  • Dhawan, B.; Redmore, D. Optically Active 1-Aminoalkylphosphonic Acids. Phosphorus Sulfur Silicon Related Element. 1987, 32, 119–144. DOI: 10.1080/03086648708074270.
  • Maheshwara Reddy, N.; Poojith, N.; Mohan, G.; Mohan Reddy, Y.; Saritha, V. K.; Visweswara Rao, P.; et al. Antioxidant, and Plant Growth Regulatory Activities of Novel α-Furfuryl-2-Alkylaminophosphonates. ACS Omega 2021, 6, 2934–2948. DOI: 10.1021/acsomega.0c05302.
  • Maier, L. Organic Phosphorus Compounds 91.1 Synthesis and Properties of 1-Amino-2-Arylethylphosphonic and-Phosphinic Acids as Well as-Phosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 1990, 53, 43–67. DOI: 10.1080/10426509008038012.
  • Kuznetsov, Y. I.; Kazanskaya, G. Y.; Tsirulnikova, N. V. Aminophosphonate Corrosion Inhibitors for Steel. Prot. Met. 2003, 39, 120–123. DOI: 10.1023/A:1022986625711.
  • Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analog Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041.
  • Natchev, I. A. Synthesis, Enzyme-Substrate Interaction, and Herbicidal Activity of Phosphoryl Analogues of Lycine. Liebig. Ann. Chem. 1988, 1988, 861–867. DOI: 10.1002/jlac.198819880908.
  • Miller, D. J.; Hammond, S. M.; Anderluzzi, D.; Bugg, T. D. H. Aminoalkylphosphinate Inhibitors of D-Ala-D-Ala Adding Enzyme. J. Chem. Soc., Perkin Trans. 1 1998, 1, 131–142. DOI: 10.1039/a704097k.
  • Herczegh, P.; Buxton, T. B.; McPherson, J. C.; Kovács-Kulyassa, A.; Brewer, P. D.; Sztaricskai, F.; Stroebel, G. G.; Plowman, K. M.; Farcasiu, D.; Hartmann, J. F. Osteo Adsorptive Bisphosphonate Derivatives of Fluoroquinolone Antibacterials. J. Med. Chem. 2002, 45, 2338–2341. DOI: 10.1021/jm0105326.
  • Yang, S.; Gao, X.-W.; Diao, C.-L.; Song, B.-A.; Jin, L.-H.; Xu, G.-F.; Zhang, G.-P.; Wang, W.; Hu, D.-Y.; Xue, W.; et al. Synthesis and Antifungal Activity of Novel Chiral α-Aminophosphonates Containing Fluorine Moiety. Chin. J. Chem. 2006, 24, 1581–1588. DOI: 10.1002/cjoc.200690296.
  • Hirschmann, R.; Smith, A. B.; Taylor, C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.; Sprengeler, P. A.; Benkovic, S. J. Synthesis and Antifungal Activity of Novel Chiral α-Aminophosphonates Containing Fluorine Moiety. Science 1994, 265, 234–237. DOI: 10.1126/science.265.5174.943.
  • Kuemin, M.; Donk, W. A. Structure-Activity Relationships of the Phosphonate Antibiotic Dehydrophos. Chem. Commun. (Camb) 2010, 46, 7694–7696. DOI: 10.1039/c0cc02958k.
  • Mohan, G.; Santhisudha, S.; Madhu Kumar Reddy, K.; Vasudeva Reddy, N.; Vijaya, T.; Suresh Reddy, C. Phosphosulfonic Acid-Catalyzed Green Synthesis and Bioassay of α-Aryl-α′-1,3,4-Thiadiazolyl Aminophosphonates. Heteroatom. Chem. 2016, 27, 269–278. DOI: 10.1002/hc.21325.
  • Haji Basha, M.; Subramanyam, C.; Prasada Rao, K. Ultrasound-Promoted Solvent-Free Synthesis of Some New α-Aminophosphonates as Potential Antioxidants. Main Group Met. Chem. 2020, 43, 147–153. DOI: 10.25135/acg.oc.123.2112.2279.
  • Bhattacharya, A. K.; Raut, D. S.; Rana, K. C.; Polanki, I. K.; Khan, M. S.; Iram, S. E. Diversity-Oriented Synthesis of α-Aminophosphonates: A New Class of Potential Anticancer Agents. Eur. J. Med. Chem. 2013, 66, 146–152. DOI: 10.1016/j.ejmech.2013.05.036.
  • Meyer, J. H.; Bartlett, P. A. Macrocyclic Inhibitors of Penicillopepsin: Design, Synthesis, and Evaluation of an Inhibitor Bridged between P1 and P3. J. Am. Chem. Soc. 1998, 120, 4600–4609. DOI: 10.1021/ja973715j.
  • Huang, X. C.; Wang, M.; Pan, Y. M.; Yao, G. Y.; Wang, H. S.; Tian, X. Y.; Qin, J. K.; Zhang, Y. Synthesis and Antitumor Activities of Novel Thiourea α-Aminophosphonates from Dehydroabietic Acid. Eur. J. Med. Chem. 2013, 69, 508–520. DOI: 10.1016/j.ejmech.2013.08.055.
  • Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. Curr. Med. Chem. Anticancer Agent. 2001, 1, 301–312. DOI: 10.2174/1568011013354543.
  • Damiche, R.; Chafaa, S. Synthesis of New Bioactive Aminophosphonates and Study of Their Antioxidant, anti-Inflammatory and Antibacterial Activities as Well the Assessment of Their Toxicological Activity. J. Mol. Struct. 2017, 1130, 1009–1017. DOI: 10.1016/j.molstruc.2016.10.054.
  • Sujatha, B.; Mohan, S.; Subramanyam, C.; Prasada Rao, K. Microwave-Assisted Synthesis and anti-Inflammatory Activity Evaluation of Some Novel α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1110–1113. DOI: 10.1080/10426507.2017.1331233.
  • Xie, X. L.; Li, R. K. Y.; Liu, Q. X.; Mai, Y. W. Structure-Property Relationships of in-Situ PMMA Modified Nano-Sized Antimony Trioxide Filled Poly(Vinyl Chloride) Nanocomposites. Polymer 2004, 45, 2793–2802. DOI: 10.1016/j.polymer.2004.02.028.
  • Bayer, E.; Gugel, K. H.; Hägele, K.; Hagenmaier, H.; Jessipow, S.; König, W. A.; Zähner, H. Metabolites of Microorganisms. 98th Communication. HCA 1972, 55, 224–239. DOI: 10.1002/hlca.19720550744.
  • Madhu Kumar Reddy, K.; Mohan, G.; Bakthavatchala Reddy, N.; Sravya, G.; Peddanna, K.; Grigory, V. Z.; Sridevi, C.; Suresh Reddy, C. Synthesis, Antioxidant Activity, and α-Glucosidase Enzyme Inhibition of α-Aminophosphonate Derivatives Bearing Piperazine-1,2,3-Triazole Moiety. J. Heterocycl. Chem. 2021, 58, 172–181. DOI: 10.1002/jhet.4157.
  • Hanumantha Rao, A.; Madhava Rao, V.; Subramanyam, C.; Priyadarshini, P.; Someswara Rao, S.; Visweswara Rao, P. An in Silico ADMET, Molecular Docking Study and Microwave-Assisted Synthesis of New Phosphorylated Derivatives of Thiazolidinedione as Potential anti-Diabetic Agents. Synth. Comm. 2022, 52, 300–315. DOI: 10.1080/00397911.2021.2024574.
  • Prasada Rao, K.; Subramanyam, C.; Haji Basha, M.; Someswara Rao, S.; Malar, C. G. R. Nano TiO2.SiO2 Catalyzed, Microwave Assisted Synthesis of New α-Aminophosphonates as Potential anti-Diabetic Agents: In Silico ADMET and Molecular Docking Study. Org. Commun. 2022, 15, 167–183. DOI: 10.25135/acg.oc.123.2112.2279.
  • Krentz, A. J.; Bailey, C. Oral Antidiabetic Agents: current Role in Type 2 Diabetes Mellitus. Drugs 2005, 65, 385–411. DOI: 10.2165/00003495-200565030-00005.
  • Tiwari, A. K.; Rao, J. M. Diabetes Mellitus and Multiple Therapeutic Approaches of Phytochemicals: Present Status and Future Prospects. Curr. Sci. 2002, 83, 30–38. https://www.jstor.org/stable/24106071.
  • Singh, S. K.; Rai, P. K.; Jaiswal, D.; Watal, G. Evidence-Based Critical Evaluation of Glycemic Potential of Cynodon Dactylon. Evid Based Compl. Alternat Med. 2008, 5, 415–420. DOI: 10.1093/ecam/nem044.
  • Eduardo, B. D. M.; Adriane, D. S. Gomes, I. C. α- and β-Glucosidase Inhibitors: chemical Structure and Biological Activity. Tetrahedron 2006, 62, 10277–10302. DOI: 10.1016/j.tet.2006.08.055.
  • Altaff, S. M.; Raja Rajeswari, T.; Subramanyam, C. Synthesis, α-Amylase Inhibitory Activity Evaluation and in Silico Molecular Docking Study of Some New Phosphoramidates Containing Heterocyclic Ring. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 389–397. DOI: 10.1080/10426507.2020.1845679.
  • Pavan Phani Kumar, M.; Anuradha, V.; Subramanyam, C.; Hari Babu, V. V. In Silico Molecular Docking Study, Synthesis and α-Amylase Inhibitory Activity Evaluation of Phosphorylated Derivatives of Purine. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 1010–1017. DOI: 10.1080/10426507.2021.1960833.
  • Sujatha, B.; Subramanyam, C.; Venkataramaiah, C.; Rajendra, W.; Prasada Rao, K. Synthesis and anti-Diabetic Activity Evaluation of Phosphonates Containing Thiazolidinedione Moiety. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 586–591. DOI: 10.1080/10426507.2020.1737061.
  • Ordonez, M.; Cabrera, H. R.; Cativiela, C. An Overview of Stereoselective Synthesis of α-Aminophosphonic Acids and Derivatives. Tetrahedron 2009, 65, 17–49. DOI: 10.1016/j.tet.2008.09.083.
  • Farahani, N.; Akbari, J. Organocatalytic Synthesis of α-Aminophosphonates Using o-Benzenedisulfonimide as a Recyclable Bronsted Acid Catalyst. Lett. Org. Chem. 2017, 483–487. 14. DOI: 10.2174/1570178614666170321123731.
  • Mitragotri, S. D.; Pore, D. M.; Desai, U. V.; Wadgaonkar, P. P. Sulfamic Acid: An Efficient and Cost-Effective Solid Acid Catalyst for the Synthesis of α-Aminophosphonates at Ambient Temperature. Catal. Commun. 2008, 9, 1822–1826. DOI: 10.1016/j.catcom.2008.02.011.
  • Mohammadiyan, E.; Ghafuri, H.; Kakanejadifard, A. A New Procedure for Synthesis of α-Aminophosphonates by Aqueous Formic Acid as an Effective and Environment-Friendly Organocatalyst. J. Chem. Sci. 2017, 129, 1883–1891. DOI: 10.1007/s12039-017-1394-z.
  • Rostamizadeh, M.; Maghsoodlou, M. T.; Hazeri, N.; Habibi-Khorassani, S. M.; Keishams, L. A Novel and Efficient Synthesis of α-Aminophosphonates by Use of Triphenyl Phosphite in Acetic Acid Media. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 334–337. DOI: 10.1080/10426507.2010.500641.
  • Vahdat, S. M.; Baharfar, R.; Tajbakhsh, M.; Heydari, A.; Baghbanian, S. M.; Haksar, S. Organocatalytic Synthesis of α-Hydroxy and α-Aminophosphonates. Tetrahedron Lett. 2008, 49, 6501–6504. DOI: 10.1016/j.tetlet.2008.08.094.
  • Ghafuri, H.; Rashidizadeh, A.; Zand, H. R. E. Highly Efficient Solvent Free Synthesis of α-Aminophosphonates Catalyzed by Recyclable Nano-Magnetic Sulfated Zirconia (Fe3O4@ZrO2/SO42−). RSC Adv. 2016, 6, 16046–16054. DOI: 10.1039/C5RA13173A.
  • Tang, J.; Wang, L.; Wang, W.; Zhang, L.; Wu, S.; Mao, D. A Facile Synthesis of α-Aminophosphonates Catalyzed by Ytterbium Perfluorooctanoate under Solvent-Free Conditions. J. Fluor. Chem. 2011, 132, 102–106. DOI: 10.1016/j.jfluchem.2010.12.002.
  • Wang, A.; Xu, Y.; Gao, Y.; Huang, Q.; Luo, X.; An, H.; Dong, J. Chemical and Bioactive Diversities of the Genera Stachybotrys and Memnoniella Secondary Metabolites. Phytochem. Rev. 2015, 14, 623–655. DOI: 10.1007/s11101-014-9365-1.
  • Sreekanth Reddy, P.; Vasu Govardhana Reddy, P. Mallikarjun Reddy, S. 2,4,6-Tris(4-Iodophenoxy)-1,3,5-Triazine as a New Recyclable “Iodoarene” for in Situ Generation of Hypervalent Iodine(III) Reagent for α-Tosyloxylation of Enolizable Ketones. Tetrahedron Lett. 2014, 55, 3336–3342. DOI: 10.1016/j.tetlet.2014.04.052.
  • Lewkowski, J.; Tokarz, P.; Lis, T.; Ślepokura, K. Stereoselective Addition of Dialkyl Phosphites to di-Salicylaldimines Bearing the (R,R)-1,2-Diaminocyclohexane Moiety. Tetrahedron 2014, 70, 810–816. DOI: 10.1016/j.tet.2013.12.042.
  • Motevalli, S.; Iranpoor, N.; Etemadi-Davan, E.; Moghadam, K. R. Exceptional Effect of Nitro Substituent on the Phosphonation of Imines: The First Report on Phosphonation of Imines to α-Iminophosphonates and α-(N-Phosphorylamino)Phosphonates. RSC Adv. 2015, 5, 100070–100076. DOI: 10.1039/C5RA14393D.
  • Kaboudin, B.; Kazemi, F.; Hosseini, N. K. A Novel Straightforward Synthesis of α-Aminophosphonates: one-Pot Three-Component Condensation of Alcohols, Amines, and Diethylphosphite in the Presence of CuO@Fe3O4 Nanoparticles as a Catalyst. Res. Chem. Intermed 2017, 43, 4475–4486. DOI: 10.1007/s11164-017-2890-y.
  • Ravikumar, D.; Mohan, S.; Subramanyam, C.; Prasada Rao, K. Solvent-Free Sonochemical Kabachnic-Fields Reaction to Synthesize Some New α-Aminophosphonates Catalyzed by nano-BF3 SiO2. Phosphorus, Sulfur Silicon Relat. Elem. Phosphorus Sulfur Silicon Related Element. 2018, 193, 400–407. DOI: 10.1080/10426507.2018.1424163.
  • Syama Sundar, C.; Bakthavatchala Reddy, N.; Sivaprasad, S.; Uma, M.; Rao, K.; Jaya, P. S. H.; Suresh Reddy, C. Tween-20: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates in Aqueous Media. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 523–534. DOI: 10.1080/10426507.2011.631641.
  • Azaam, M. M.; Kenawy, E. R.; El-Din, S. B.; Khamis, A. A.; El-Magd, M. A. Antioxidant and Anticancer Activities of α-Aminophosphonates Containing Thiadiazole Moiety. J. Saudi. Chem. Soc. 2018, 22, 34–41. DOI: 10.1016/j.jscs.2017.06.002.
  • Karimi-Jaberi, Z.; Amiri, M. One-Pot Synthesis of α-Aminophosphonates Catalyzed by Boric Acid at Room Temperature. Heteroatom Chem. 2010, 21, 96–98. DOI: 10.1002/hc.20577.
  • Li, N.; Wang, X.; Qiu, R.; Xu, X.; Chen, J.; Zhang, X.; Chen, S.; Yin, S. Air-Stable Zirconocene Bis(Perfluorobutanesulfonate) as a Highly Efficient Catalyst for Synthesis of α-Aminophosphonates via Kabachnik-Fields Reaction under Solvent-Free Condition. Cat. Comm. 2014, 43, 184–187. DOI: 10.1016/j.catcom.2013.10.013.
  • Yu, Y. Q.; Xu, D. Z. A Simple and Green Procedure for the One-Pot Synthesis of α-Aminophosphonates with Quaternary Ammonium Salts as Efficient and Recyclable Reaction Media. Synthesis 2015, 47, 1869–1876. DOI: 10.1055/s-0034-1380523.
  • Munichandra Reddy, S.; Subba Rao, D.; Madhava, G.; Venkatesh, M.; Gnana Kumari, P.; Naga, R. C. A Heterogeneous Catalyst, SiO2-ZnBr2: An Efficient Neat Access for α-Aminophosphonates and Antimicrobial Activity Evaluation. J. Chem. Sci. 2016, 128, 1303–1313. DOI: 10.1007/s12039-016-1113-1.
  • Ranu, B. C.; Hajra, A. A Simple and Green Procedure for the Synthesis of α-Aminophosphonate by a One-Pot, Three-Component Condensation of Carbonyl Compound, Amine, and Diethyl Phosphite without Solvent and Catalyst. Green Chem. 2002, 4, 551–554. DOI: 10.1039/B205747F.
  • Yamazaki, S. Selective Synthesis of Sulfoxides and Sulfones by Methyltrioxorhenium-Catalyzed Oxidation of Sulfides with Hydrogen Peroxide. BCSJ 1996, 69, 2955–2959. DOI: 10.1246/bcsj.69.2955.
  • Reich, H. J.; Chow, F.; Peake, S. L. Seleninic Acids as Catalysts for Oxidations of Olefins and Sulfides Using Hydrogen Peroxide. Synthesis 1978, 1978, 299–301. DOI: 10.1055/s-1978-24730.
  • Mahyar, A.; Behnajady, M. A.; Modirshahla, N. Characterization and Photocatalytic Activity of SiO2-TiO2 Mixed Oxide Nanoparticles Prepared by Sol-Gel Method. Indian J. Chem. A 2010, 49A, 1593–1600.
  • Ingale, S. V.; Wagh, P. B.; Tripathi, A. K.; Dudwadkar, A. S.; Gamre, S. S.; Rao, P. T.; Singh, I. K.; Gupta, S. C. Photo Catalytic Oxidation of TNT Using TiO2-SiO2 Nano-Composite Aerogel Catalyst Prepared Using Sol-Gel Process. J. Sol-Gel Sci. Technol. 2011, 58, 682–688. DOI: 10.1007/s10971-011-2445-4.
  • Sravya, G.; Grigory Zyryanov, V.; Balakrishna, A.; Madhu Kumar Reddy, K.; Suresh Reddy, C.; Mallikarjuna Reddy, G.; Camilo, A.; Jr, Garcia, J. R.; Bakthavatchala Reddy, N. Nano-TiO2/SiO2 Catalyzed Synthesis, Theoretical Calculations and Bioactivity Studies of New α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 562–567. DOI: 10.1080/10426507.2018.1455201.
  • Subramanyam, C.; Thaslim Basha, S.; Madhava, G.; Nayab Rasool, S.; Adam, S.; Durga Srinivasa Murthy, S.; Naga Raju, C. Synthesis, Spectral Characterization and Bioactivity Evaluation of Novel α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 267–270. DOI: 10.1080/10426507.2017.1288123.
  • Mirjalili, B. B. F.; Akbari, A. Nano-TiO2: An Eco-Friendly Alternative for the Synthesis of Quinoxalines. Chin. Chem. Lett. 2011, 22, 753–756. DOI: 10.1016/j.cclet.2010.12.016.
  • Mirjalili, B. F.; Akbari, A. Z. Nano-TiO2: An Eco-Friendly and Re-Usable Catalyst for the One-Pot Synthesis of β-Acetamido Ketones. Naturforsch 2009, 64, b, 347–350. DOI: 10.1515/znb-2009-0318.
  • Mirjalili, B. F.; Bamoniri, A.; Akbari, A.; Taghavinia, N. Nano-TiO2: An Eco-Friendly and Re-Usable Catalyst for the Synthesis of 14-Aryl or Alkyl-14H-Dibenzo[a,j]Xanthenes. JICS 2011, 8, S129–S134. DOI: 10.1007/BF03254289.
  • Rahimizadeh, M.; Bakhtiarpoor, Z.; Eshghi, H.; Pordel, M.; Rajabzadeh, G. Nano TiO2/SiO2: An Efficient and Reusable Catalyst for the Synthesis of Oxindole Derivatives. Monatsh Chem. 2009, 140, 1465–1469. DOI: 10.1016/j.jscs.2014.09.002.
  • Quin, L. D.; Verkade, J. G. Phosphorus-31 NMR Spectral Properties Compound Characterization and Structural Analysis; VCH Publishers: New York, 1994.
  • Trott, O.; Olson, A. J. Auto Dock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • Nickavar, B.; Amin, G. Enzyme Assay Guided Isolation of an Alpha-Amylase Inhibitor Flavonoid from Vaccinium Arctostaphylos Leaves. Iran J. Pharm. Res. 2011, 10, 849–853. PMC3813050.
  • Patil, V. S.; Nandre, K. P.; Ghosh, S.; Rao, V. J.; Chopade, B. A.; Sridhar, B.; Bhosale, S. V.; Bhosale, S. V. Synthesis, Crystal Structure and anti-Diabetic Activity of Substituted (E)-3-(Benzo[d]Thiazol-2-Ylamino)Phenylprop-2-en-1-One. Eur. J. Med. Chem. 2013, 59, 304–309. DOI: 10.1016/j.ejmech.2012.11.020.
  • Kim, J. S.; Hyun, T. K.; Kim, M. J. The Inhibitory Effects of Ethanol Extracts from Sorghum, Foxtail Millet and Proso Millet on α-Glucosidase and α-Amylase Activities. Food Chem. 2011, 124, 1647–1651. DOI: 10.1016/j.foodchem.2010.08.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.