129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Novel 4H-pyrimido[2,1-b]benzothiazoles derivatives: Camphorsulphonic acid catalyzed enantioselective synthesis, optimization, and biological study

, , &
Pages 822-835 | Received 06 Sep 2022, Accepted 11 Feb 2023, Published online: 15 Apr 2023

References

  • (a) Zhou, J.; Tang, J.; Tang, W. Recent Development of Cationic Cyclodextrins for Chiral Separation. Trac-Trend. Anal. Chem. 2015, 65, 22–29, DOI: 10.1016/j.trac.2014.10.009 (b) Asami, M.; Hasome, A.; Yachi, N.; Hosoda, N.; Yamaguchi, Y.; Ito, S. Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by o-Xylylene-Type Chiral 1,4-Amino Alcohols with an Aminal Structure. Tetrahedron Asymmetry 2016, 27 (7), 322–329, DOI: 10.1016/j.tetasy.2016.03.007.
  • Ghanem, A.; Ahmed, M.; Ishii, H.; Ikegami, T. Immobilized β-Cyclodextrin-Based Silica vs Polymer Monoliths for Chiral Nano Liquid Chromatographic Separation of Racemates. Talanta 2015, 132, 301–314. DOI: 10.1016/j.talanta.2014.09.006.
  • (a) The United States Adopted Names (USAN) Council in The American Medical Association (AMA). Geometric Isomerism and Chirality: The USAN Perspective. 2005; (b) Moran, P, New Ligands for Asymmetric Hydrogenation, Specialty Chems. Magazine, July–Aug 2003, 16.
  • Saha, S.; Moorthy, J. N. Enantioselective Organocatalytic Biginelli Reaction: Dependence of the Catalyst on Sterics, Hydrogen Bonding, and Reinforced Chirality. J. Org. Chem. 2011, 76, 396–402. DOI: 10.1021/jo101717m.
  • (a) Bhoi, M. N.; Borad, M. A.; Patel, H. D. Synthetic Strategies for Fused Benzothiazoles: Past, Present, and Future. Synth. Commun. 2014, 44 (17), 2427–2457, DOI: 10.1080/00397911.2014.907426 (b) Bhoi, M. N.; Borad, M. A.; Pithawala, E. A.; Patel, H. D. Novel Benzothiazole Containing 4H-Pyrimido[2,1-b]Benzothiazoles Derivatives: One Pot, Solvent-Free Microwave Assisted Synthesis and Their Biological Evaluation. Arab. J. Chem. 2019, 12 (8), 3799–3813, DOI: 10.1016/j.arabjc.2016.01.012; (c) Agarwal, D. K.; Sahiba, N.; Sethiya, A.; Soni, J.; Teli, P.; Agarwal, S.; Goyal, P. K. Insight View on Synthetic Strategies and Biological Applications of Pyrimidobenzothiazoles. Mini. Rev. Org. Chem. 2021, 18 (8), 1012–1025, DOI: 10.2174/1570193X18666210122155016; (d) Alishahi, N.; Nasr‐Esfahani, M.; Mohammadpoor‐Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M. Nicotine-Based Ionic Liquid Supported on Magnetic Nanoparticles: An Efficient and Recyclable Catalyst for Selective One-Pot Synthesis of Mono- and Bis-4H-Pyrimido[2,1-b]Benzothiazoles. Appl. Organomet. Chem. 2020, 34 (8), e5681, DOI: 10.1002/aoc.5681; (e) Al-Mutairi, A. A.; Hafez, H. N.; El-Gazzar, A.-R. B.; Mohamed, M. Y. Synthesis and Antimicrobial, Anticancer and anti-Oxidant Activities of Novel 2,3-Dihydropyrido[2,3-d]Pyrimidine-4-One and Pyrrolo[2,1-b][1,3]Benzothiazole Derivatives via Microwave-Assisted Synthesis. Molecules 2022, 27 (4), 1246, DOI: 10.3390/molecules27041246; (f) Atar, A. B.; Han, E.; Kang, J. FeF3-Mediated Tandem Annulation: A Highly Efficient One-Pot Synthesis of Functionalized N-Methyl-3-Nitro-4H-Pyrimido [2, 1-b] [1, 3] Benzothiazole-2-Amine Derivatives under Neat Conditions. Mol. Divers. 2020, 24 (2), 443–453, DOI: 10.1007/s11030-019-09963-2; (g) Chen, X.-P.; Hou, K.-Q.; Zhou, F.; Chan, A. S.; Xiong, X.-F. Organocatalytic Asymmetric Synthesis of Benzothiazolopyrimidines via [4 + 2] Cyclization of 2-Benzothiazolimines and Aldehydes. J. Org. Chem. 2021, 86 (2), 1667–1675, DOI: 10.1021/acs.joc.0c02499; (h) Dehghani Tafti, A.; Mirjalili, B. B. F.; Salehi, N.; Bamoniri, A. Fe3O4@Nano-Dextrin–OPO3H2: A Bio-Based Magnetic Nano-Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]Benzothiazole Derivatives. J. Iran. Chem. Soc. 2022, 19 (11), 4377–4388, DOI: 10.1007/s13738-022-02607-7; (i) Hosseinikhah, S. S.; Mirjalili, B. B. F. Fe3O4@NCs/Sb(V): as a Cellulose Based Nano-Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]Benzothiazoles. Polycyclic Aromat. Compd. 2022, 42 (4), 1013–1022, DOI: 10.1080/10406638.2020.1764985; (j) Khazenipour, K.; Moeinpour, F.; Mohseni‐Shahri, F. S. Cu(II)-Supported Graphene Quantum Dots Modified NiFe2O4: A Green and Efficient Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]Benzothiazoles in Water. J. Chin. Chem. Soc. 2021, 68 (1), 121–130, DOI: 10.1002/jccs.202000213; (k) Mallah, D.; Mirjalili, B. B. F. FNAOSiPPEA: An Effective Magnetite Almond Shellbased Nano Catalyst for the Synthesis of Dihydropyrano[3,2-c]Chromene and Tetrahydrobenzo[b]Pyran. BMC Chem. 2022, 16 (1), 1–13, DOI: 10.21203/rs.3.rs-2204735/v1. (l) Moosavi-Zare, A. R.; Goudarziafshar, H.; Fashi, P. Nano-Co-[4-Chlorophenyl-Salicylaldimine-Pyranopyrimidine Dione]Cl2 as a New Schiff Base Complex and Catalyst for the One-Pot Synthesis of Some 4H-Pyrimido[2,1-b]Benzazoles. Res. Chem. Intermed. 2020, 46 (12), 5567–5582, DOI: 10.1007/s11164-020-04279-5; (m) Rangappa, M. M.; Keshavayya, J.; Krishna, P. M.; Rajesh, K. Transition Metal Complexes of Ligand 4-Imino-3-[(4,5,6,7-Tetrahydro-1,3-Benzothiazol-2-yl)Diazenyl]-4Hpyrimido[2,1-b][1,3]Benzothiazol-2-ol Containing Benzothiazole Moiety: Synthesis, Spectroscopic Characterization and Biological Evaluation. Inorg. Chem. Commun. 2021, 127, 108524, DOI: 10.1016/j.inoche.2021.108524; (n) Sethiya, A.; Soni, J.; Manhas, A.; Jha, P. C.; Agarwal, S. Green and Highly Efficient MCR Strategy for the Synthesis of Pyrimidine Analogs in Water via C–C and C–N Bond Formation and Docking Studies. Res. Chem. Intermed. 2021, 47 (11), 4477–4496, DOI: 10.1007/s11164-021-04529-0; (o) Singh, S.; Lal, J. DBU Catalysis in Micellar Medium: An Environmentally Benign Synthetic Approach for Triheterocyclic 4H-Pyrimido[2,1-b]Benzothiazole Derivatives. SN Appl. Sci. 2020, 2 (7), 1–9, DOI: 10.1007/s42452-020-3025-4; (p) Yu, Y.; Gong, Q.-T.; Lu, W.-F.; Liu, Y.-H.; Yang, Z.-J.; Wang, N.; Yu, X.-Q. Aggregation-Induced Emission Probes for Specific Turn-On Quantification of Bovine Serum Albumin. ACS Appl. Bio. Mater. 2020, 3 (8), 5193–5201, DOI: 10.1021/acsabm.0c00589; (q) Yu, Y.; Lu, W.-F.; Yang, Z.-J.; Wang, N.; Yu, X.-Q. Combining Photo-Redox and Enzyme Catalysis for the Synthesis of 4H-Pyrimido[2,1-b] Benzothiazole Derivatives in One Pot. Bioorg. Chem. 2021, 107, 104534, DOI: 10.1016/j.bioorg.2020.104534; (r) Yu, Y.; Zhang, W.; Gong, Q.-T.; Liu, Y.-H.; Yang, Z.-J.; He, W.-X.; Wang, N.; Yu, X.-Q. Enzyme-Catalysed One-Pot Synthesis of 4H-Pyrimido[2,1-b] Benzothiazoles and Their Application in Subcellular Imaging. J. Biotechnol. 2020, 324, 91–98, DOI: 10.1016/j.jbiotec.2020.09.014; (s) Zangouei, M.; Esmaeili, A. A. One-Pot, Catalyst-Free Synthesis of Novel Spiro[Indole-3,4′-Pyrano[2′,3′:4,5]Pyrimido [2,1-b][1,3]Benzothiazole] Derivatives. J. Chem. Res. 2020, 44 (11–12), 646–652, DOI: 10.1177/1747519820916926.
  • (a) Palagiano, F.; Arenare, L.; De Caprariis, P.; Grandolini, G.; Ambrogi, V.; Perioli, L.; Filippelli, W.; Falcone, G.; Rossi, F. Synthesis and SAR Study of Imidazo[2,1-b]Benzothiazole Acids and Some Related Compounds with anti-Inflammatory and Analgesic Activities. Farmaco. 1996, 51 (7), 483–491, PMID: 8765671; (b) Roy, P. J.; Landry, K.; Leblanc, Y.; Chun, L.; Tsou, N. Condensation of 2-Amino-5-Chlorobenzoxazole with α-Bromoketones: A Mechanistic Study. Heterocycles. 1997, 11 (45), 2239–2246, DOI: 10.3987/COM-97-7923.
  • (a) Russo, F.; Santagati, A.; Santagati, M. Some Pyrido[1,2-a]Pyrimidones. J. Heterocycl. Chem. 1985, 22, 297–299. DOI: 10.1002/jhet.5570220212 (b) Landreau, C.; Deniaud, D.; Evain, M.; Reliquet, A.; Meslin, J.-C. Efficient Regioselective Synthesis of Triheterocyclic Compounds: imidazo[2,1-b]Benzothiazoles, Pyrimido[2,1-b]Benzothiazolones and Pyrimido[2,1-b]Benzothiazoles. J. Chem. Soc., Perkin Trans. 2002, 1 (6), 741–745, DOI: 10.1039/B111639H.
  • (a) Benetti, S.; Romagnoli, R.; De Risi, C.; Spalluto, G.; Zanirato, V. Mastering.beta.-Keto Esters.Chem. Rev. 1995, 95 (4), 1065–1114, DOI: 10.1021/cr00036a007 (b) Kappe, C. O. High-Speed Combinatorial Synthesis Utilizing Microwave Irradiation. Curr. Opin. Chem. Biol. 2002, 6 (3), 314–320, DOI: 10.1016/S1367-5931(02)00306-X; (c) Nair, V.; Rajesh, C.; Vinod, A.; Bindu, S.; Sreekanth, A.; Mathen, J.; Balagopal, L. Strategies for Heterocyclic Construction via Novel Multicomponent Reactions Based on Isocyanides and Nucleophilic Carbenes. Acc. Chem. Res. 2003, 36 (12), 899–907, DOI: 10.1021/ar020258p; (d) Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1,3-Dicarbonyl Derivatives in Multicomponent Reactions. Eur. J. Org. Chem. 2004, 2004 (24), 4957–4980, DOI: 10.1002/ejoc.200400511; (e) Ramón, D. J.; Yus, M. Asymmetric Multicomponent Reactions (AMCRs): the New Frontier. Angew. Chem., Int. Ed. 2005, 44 (11), 1602–1634, DOI: 10.1002/anie.200460548; (f) Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106 (1), 17–89, DOI: 10.1021/cr0505728; (g) Dondoni, A.; Massi, A. Design and Synthesis of New Classes of Heterocyclic C-Glycoconjugates and Carbon-Linked Sugar and Heterocyclic Amino Acids by Asymmetric Multicomponent Reactions (AMCRs). Acc. Chem. Res. 2006, 39 (7), 451–463, DOI: 10.1021/ar068023r; (i) Yu, J.; Shi, F.; Gong, L.-Z. Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc. Chem. Res. 2011, 44 (11), 1156–1171, DOI: 10.1021/ar2000343.
  • Kappe, C. O.; Stadler, A. The Biginelli Dihydropyrimidine Synthesis. Org. React 2004, 63, 1–117. DOI: 10.1002/0471264180.or063.01.
  • (a) Ramesh, B.; Bhalgat, C. M. Novel Dihydropyrimidines and Its Pyrazole Derivatives: Synthesis and Pharmacological Screening. Eur. J. Med. Chem. 2011, 46 (5), 1882–1891, DOI: 10.1016/j.ejmech.2011.02.052 (b) Sakata, K. I.; Someya, M.; Matsumoto, Y.; Tauchi, H.; Kai, M.; Toyota, M.; Takagi, M.; Hareyama, M.; Fukushima, M. Gimeracil, an Inhibitor of Dihydropyrimidine Dehydrogenase, Inhibits the Early Step in Homologous Recombination. Cancer Sci. 2011, 102 (9), 1712–1716, DOI: 10.1111/j.1349-7006.2011.02004.x; (c) Zhu, L.; Cheng, P.; Lei, N.; Yao, J.; Sheng, C.; Zhuang, C.; Guo, W.; Liu, W.; Zhang, Y.; Dong, G. Synthesis and Biological Evaluation of Novel Homocamptothecins Conjugating with Dihydropyrimidine Derivatives as Potent Topoisomerase I Inhibitors. Arch. Pharm. 2011, 344 (11), 726–734, DOI: 10.1002/ardp.201000402.
  • (a) Kappe, C. O. Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. Acc. Chem. Res. 2000, 33 (12), 879–888, DOI: 10.1021/ar000048h;. (b.) Dallinger, D.; Stadler, A.; Kappe, C. O. Solid- and Solution-Phase Synthesis of Bioactive Dihydropyrimidines. Pure Appl. Chem. 2004, 76 (5), 1017–1024, DOI: 10.1351/pac200476051017.
  • Nilsson, B. L.; Overman, L. E. Concise Synthesis of Guanidine-Containing Heterocycles Using the Biginelli Reaction. J. Org. Chem. 2006, 71, 7706–7714. DOI: 10.1021/jo061199m.
  • Kaur, N.; Kaur, K.; Raj, T.; Kaur, G.; Singh, A.; Aree, T.; Park, S.-J.; Kim, T.-J.; Singh, N.; Jang, D. O. One-Pot Synthesis of Tricyclic Dihydropyrimidine Derivatives and Their Biological Evaluation. Tetrahedron 2015, 71, 332–337. DOI: 10.1016/j.tet.2014.11.039.
  • (a) Alajarin, R.; Jordán, P.; Vaquero, J. J.; Alvarez-Builla, J. Synthesis of Unsymmetrically Substituted 1,4-Dihydropyridines and Analogous Calcium Antagonists by Microwave Heating, Synthesis. 1995, 1995 (04), 389–391, DOI: 10.1055/s-1995-3933. (b) Shaabani, A.; Rahmati, A.; Naderi, S. A Novel One-Pot Three-Component Reaction: synthesis of Triheterocyclic 4H-Pyrimido[2,1-b]Benzazoles Ring Systems. Bioorg. Med. Chem. Lett. 2005, 15 (24), 5553–5557, DOI: 10.1016/j.bmcl.2005.08.101.
  • (a) Ranu, B. C.; Hajra, A.; Dey, S. S. A Practical and Green Approach towards Synthesis of Dihydropyrimidinones without Any Solvent or Catalyst. Org. Process Res. Dev. 2002, 6 (6), 817–818, DOI: 10.1021/op0255478 (b) Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide Triflate Catalyzed Biginelli Reaction. One-Pot Synthesis of Dihydropyrimidinones under Solvent-Free Conditions. J. Org. Chem. 2000, 65 (12), 3864, DOI: 10.1021/jo9919052; (c) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L. Rare-Earth Metal Triflates in Organic Synthesis. Chem. Rev. 2002, 102 (6), 2227–2302, DOI: 10.1021/cr010289i; (d) Martins, M. A.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Solvent-Free Heterocyclic Synthesis. Chem. Rev. 2009, 109 (9), 4140–4182, DOI: 10.1021/cr9001098.
  • Stadler, A.; Kappe, C. O. Automated Library Generation Using Sequential Microwave-Assisted Chemistry. Application toward the Biginelli Multicomponent Condensation. J. Comb. Chem. 2001, 3, 624–630. DOI: 10.1021/cc010044j.
  • (a) Huang, Y.; Yang, F.; Zhu, C. Highly Enantioseletive Biginelli Reaction Using a New Chiral Ytterbium Catalyst: Asymmetric Synthesis of Dihydropyrimidines. J. Am. Chem. Soc. 2005, 127 (47), 16386–16387, DOI: 10.1021/ja056092f (b) Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z. Highly Enantioselective Organocatalytic Biginelli Reaction. J. Am. Chem. Soc. 2006, 128 (46), 14802–14803, DOI: 10.1021/ja065267y; (c) Li, N.; Chen, X.-H.; Song, J.; Luo, S.-W.; Fan, W.; Gong, L.-Z. Highly Enantioselective Organocatalytic Biginelli and Biginelli-Like Condensations: Reversal of the Stereochemistry by Tuning the 3,3′-Disubstituents of Phosphoric Acids. J. Am. Chem. Soc. 2009, 131 (42), 15301–15310, DOI: 10.1021/ja905320q.
  • Kappe, C. O. Biologically Active Dihydropyrimidones of the Biginelli-Type – A Literature Survey. Eur. J. Med. Chem. 2000, 35 (12), 1043–1052, DOI: 10.1016/S0223-5234(00)01189-2.
  • (a) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen.Science. 1999, 286 (5441), 971–974, DOI: 10.1126/science.286.5441.971. (b) Maliga, Z.; Kapoor, T. M.; Mitchison, T. J. Evidence That Monastrol is an Allosteric Inhibitor of the Mitotic Kinesin Eg5. Chem. Biol. 2002, 9 (9), 989–996, DOI: 10.1016/S1074-5521(02)00212-0.
  • Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.; Steele, T. G.; Homnick, C. F.; Freidinger, R. M.; Ransom, R. W.; et al. In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1A Receptor Antagonists for the Treatment of Benign Prostatic Hyperplasia. J. Med. Chem. 2000, 43, 2703–2718. DOI: 10.1021/jm990612y.
  • Borowsky, B.; Durkin, M. M.; Ogozalek, K.; Marzabadi, M. R.; DeLeon, J.; Lagu, B.; Heurich, R.; Lichtblau, H.; Shaposhnik, Z.; Daniewska, I.; et al. Antidepressant, Anxiolytic and Anorectic Effects of a Melanin-Concentrating Hormone-1 Receptor Antagonist. Nat. Med. 2002, 8, 825–830. DOI: 10.1038/nm741.
  • Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O'Reilly, B. C. Dihydropyrimidine Calcium Channel Blockers. 3. 3-Carbamoyl-4-Aryl-1,2,3,4-Tetrahydro-6-Methyl-5-Pyrimidinecarboxylic Acid Esters as Orally Effective Antihypertensive Agents. J. Med. Chem. 1991, 34, 806–811. DOI: 10.1021/jm00106a048.
  • (a) Gong, L. Z.; Chen, X. H.; Xu, X. Y. Asymmetric Organocatalytic Biginelli Reactions: A New Approach to Quickly Access Optically Active 3,4-Dihydropyrimidin-2-(1H)-Ones.Chemistry. 2007, 13 (32), 8920–8926, DOI: 10.1002/chem.200700840. (b) Gonzalez-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E. Application of (1S,4S)-2,5-Diazabicyclo[2.2.1]Heptane Derivatives in Asymmetric Organocatalysis: The Biginelli Reaction. Arkivoc. 2008, 6, 61–72, DOI: 10.3998/ark.5550190.0009.606; (c) Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. An Enantioselective Biginelli Reaction Catalyzed by a Simple Chiral Secondary Amine and Achiral Brønsted Acid by a Dual-Activation Route. Chem.–Eur. J. 2008, 14 (10), 3177–3181, DOI: 10.1002/chem.200701581; (d) Sohn, J. H.; Choi, H. M.; Lee, S.; Joung, S.; Lee, H. Y. Probing the Mode of Asymmetric Induction of Biginelli Reaction Using Proline Ester Salts. Eur. J. Org. Chem. 2009, 2009 (23), 3858–3862, DOI: 10.1002/ejoc.200900455; (e) Wu, Y. Y.; Chai, Z.; Liu, X. Y.; Zhao, G.; Wang, S. W. Synthesis of Substituted 5-(Pyrrolidin-2-yl)Tetrazoles and Their Application in the Asymmetric Biginelli Reaction. Eur. J. Org. Chem. 2009, 2009 (6), 904–911, DOI: 10.1002/ejoc.200801046; (f) Ding, D.; Zhao, C. G. Primary Amine Catalyzed Biginelli Reaction for the Enantioselective Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Eur. J. Org. Chem. 2010, 2010 (20), 3802–3005, DOI: 10.1002/ejoc.201000448; (g) Wang, Y.; Yu, J.; Miao, Z.; Chen, R. Bifunctional Primary Amine-Thiourea–TfOH (BPAT·TfOH) as a Chiral Phase-Transfer Catalyst: The Asymmetric Synthesis of Dihydropyrimidines. Org. Biomol. Chem. 2011, 9 (8), 3050–3054, DOI: 10.1039/C0OB01268H; (h) Cai, Y. F.; Yang, H. M.; Li, L.; Jiang, K. Z.; Lai, G. Q.; Jiang, J. X.; Xu, L. W. Cooperative and Enantioselective NbCl5/Primary Amine Catalyzed Biginelli Reaction. Eur. J. Org. Chem. 2010, 2010 (26), 4986–4990, DOI: 10.1002/ejoc.201000894.
  • (a) Xu, F.; Huang, D.; Lin, X.; Wang, Y. Highly Enantioselective Biginelli Reaction Catalyzed by SPINOL-Phosphoric Acids.Org. Biomol. Chem. 2012, 10 (22), 4467–4470, DOI: 10.1039/C2OB25663K;. (b.) Pelit, E.; Turgut, Z. (+)-CSA Catalyzed Multicomponent Synthesis of 1-[(1,3-Thiazol-2-Ylamino)Methyl]-2-Naphthols and Their Ring-Closure Reaction under Ultrasonic Irradiation. J. Chem. 2016, 2016, 1–9.DOI: 10.1155/2016/9315614; (c) Kaur, G.; Bala, K.; Devi, S.; & Banerjee, B. Camphorsulfonic Acid (CSA): an Efficient Organocatalyst for the Synthesis or Derivatization of Heterocycles with Biologically Promising Activities. Curr. Green Chem., 2018, 5(3), 150–167, DOI: 10.2174/2213346105666181001113413.
  • (a) Chen, W.; Du, W.; Duan, Y. Z.; Wu, Y.; Yang, S. Y.; Chen, Y. C. Enantioselective 1,3-Dipolar Cycloaddition of Cyclic Enones Catalyzed by Multifunctional Primary Amines: Beneficial Effects of Hydrogen Bonding. Angew. Chem. 2007, 119 (40), 7811–7814, DOI: 10.1002/ange.200702618. (b) Hong, L.; Kai, M.; Wu, C.; Sun, W.; Zhu, G.; Li, G.; Yao, X.; Wang, R. Enantioselective 1,3-Dipolar Cycloaddition of Methyleneindolinones and N,N′-Cyclic Azomethine Imines. Chem. Commun. 2013, 49 (60), 6713–6715, DOI: 10.1039/C3CC41507D.
  • (a) Li, Z.; Yu, H.; Liu, HL; L. Zhang, H.; Jiang, B.; Wang, B.; Guo, HC. Phosphine-Catalyzed [3 + 2] Cycloaddition Reactions of Azomethine Imines with Electron-Deficient Alkenes: A Facile Access to Dinitrogen-Fused Heterocycles.Chemistry. 2014, 20, 1731–1736, DOI: 10.1002/chem.201303625;. (b.) Denmark, S. E.; Beutner, G. L. Lewis Base Catalysis in Organic Synthesis. Angew. Chem., Int. Ed. 2008, 47 (9), 1560–1638, DOI: 10.1002/anie.200604943.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. IL MILIONE: A Suite of Computer Programs for Crystal Structure Solution of Proteins. J. Appl. Crystallogr. 2007, 40, 609–613. DOI: 10.1107/S0021889807010941.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.