203
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in the study of P(O)-N bond construction

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 789-799 | Received 09 Feb 2023, Accepted 31 Mar 2023, Published online: 08 Jun 2023

References

  • Luo, C.; Zuo, J.; Wang, F.; Li, F.; Zhao, J.; Xu, Z. Click Chemistry‐Assisted Preparation and Properties of Phosphorus and Nitrogen Synergistic Flame-Retardant Optical Resin with a High Refractive Index. J. Appl. Polym. Sci. 2018, 135, 46648. DOI: 10.1002/app.46648.
  • Camp, N. P.; Perrey, D. A.; Kinchington, D.; Hawkins, P. C.; Gani, D. Synthesis of Peptide Analogues Containing Phosphonamidate Methyl Ester Functionality: HIV-1 Proteinase Inhibitors Possessing Unique Cell Uptake Properties. Bioorg. Med. Chem. 1995, 3, 297–212. DOI: 10.1016/0968-0896(95)00022-9.
  • Lejczak, B.; Kafarski, P. Biological Activity of Aminophosphonic Acids and Their Short Peptides. Top. Heterocycl. Chem. 2009, 20, 31–63. DOI: 10.1007/7081_2008_14.
  • Gaan, S.; Liang, S.; Mispreuve, H.; Perler, H.; Naescher, R.; Neisius, M. Flame Retardant Flexible Polyurethane Foams from Novel DOPO-Phosphonamidate Additives. Polym. Degrad. Stab. 2015, 113, 180–188. DOI: 10.1016/j.polymdegradstab.2015.01.007.
  • Gholivand, K.; Faraghi, M.; Fallah, N.; Satari, M.; Pooyan, M. New Phosphoramides Containing Imidazolidine Moiety as Anticancer Agents: An Experimental and Computational Study. Bioorg Chem. 2022, 120, 105617. DOI: 10.1016/j.bioorg.2022.105617.
  • Alissa, S. A.; Alghulikah, H. A.; Alothman, Z. A.; Osman, S. M.; Prete, S. D.; Capasso, C.; Nocentini, A.; Supuran, C. T. Phosphonamidates Are the First Phosphorus-Based Zinc Binding Motif to Show Inhibition of β-Class Carbonic Anhydrases from Bacteria, Fungi, and Protozoa. J. Enzyme Inhib. Med. Chem. 2020, 35, 59–64. DOI: 10.1080/14756366.2019.1681987.
  • (a) Ramage, R.; Hopton, D.; Parrott, M. J.; Richardson, R. S.; Kenner, G. W.; Moore, G. A. Phosphinamides: A New Class of Amino Protecting Groups in Peptide Synthesis. J. Chem. Soc., Perkin Trans. 1 1984, 1357–1370. DOI: 10.1039/p19840001357. (b) Ruiz-Gomez, G.; Iglesias, M. J.; Serrano-Ruiz, M.; Garcia-Granda, S.; Francesch, A.; Lopez-Ortiz, F.; Cuevas, C. Double Dearomatization of Bis(Diphenylphosphinamides) through Anionic Cyclization. A Facile Route of Accessing Multifunctional Systems with Antitumor Properties. J. Org. Chem. 2007, 72, 3790. DOI: 10.1021/jo070276q. (c) Popovici, C.; Ona-Burgos, P.; Fernandez, I.; Roces, L.; Garcia-Granda, S.; Iglesias, M. J.; Ortiz, F. L. Enantioselective Desymmetrization of Diphenylphosphinamides via (-)-Sparteine-Mediated Ortho-Lithiation. Synthesis of P-Chiral Ligands. Org. Lett. 2010, 12, 428. DOI: 10.1021/ol902545q.
  • (a) Bessières, M.; Hervin, V.; Roy, V.; Chartier, A; Snoeck, R.; Andrei, G.; Lohier, J.-F.; Agrofoglio, L. A. Highly Convergent Synthesis and Antiviral Activity of (E)-but-2-Enyl Nucleoside Phosphonoamidates. Eur. J. Med. Chem. 2018, 146, 678–686. DOI: 10.1016/j.ejmech.2018.01.086. (b) Jacobsen, N. E.; Bartlett, P. A. A. Phosphonamidate Dipeptide Analogue as an Inhibitor of Carboxypeptidase A, J. Am. Chem. Soc. 1981, 103, 654–657. DOI: 10.1021/ja00393a026. (c) Vothi, H.; Nguyen, C.; Pham, L. H.; Hoang, D. Q.; Kim, J. Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphonamidate: Thermal Stability and Flame Retardancy. ACS Omega 2019, 4, 17791–17797. DOI: 10.1021/acsomega.9b02371. (d) Malachowski, W. P.; Coward. J. K. The Chemistry of Phosphapeptides: Formation of Functionalized Phosphonochloridates under Mild Conditions and Their Reaction with Alcohols and Amines. J. Org. Chem. 1994, 59, 7616–7624. DOI: 10.1021/jo00104a016.
  • Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès, P.-A. Atherton-Todd Reaction: Mechanism, Scope and Applications. Beilstein J. Org. Chem. 2014, 10, 1166–1196. DOI: 10.3762/bjoc.10.117.
  • (a) Quintiliani, M.; Balzarini, J.; McGuiga, C. Design, Synthesis, and Biological Evaluation of C1-Phosphonamidate Analogues of 2-Deoxy-d-Ribose-1-Phosphate. Tetrahedron Lett. 2013, 69, 9111–9119. DOI: 10.1016/j.tet.2013.08.038. (b) Pertusati, F.; Serafini, S.; Albadry, N.; Snoeck, R.; Andrei, G. Phosphonoamidate Prodrugs of C5-Substituted Pyrimidine Acyclic Nucleosides for Antiviral Therapy. Antiviral Res. 2017, 143, 262–268. DOI: 10.1016/j.antiviral.2017.04.013. (c) Lentini, N. A.; Hsiao, C.-H. C.; Crull, G. B.; Wiemer, A. J.; Wiemer, D. F. Synthesis and Bioactivity of the Alanyl Phosphonamidate Stereoisomers Derived from a Butyrophilin Ligand. ACS Med. Chem. Lett. 2019, 10, 1284–1289. DOI: 10.1021/acsmedchemlett.9b00153. (d) Fredriksen, K. A.; Amedjkouh, M. Investigation of Reactive Intermediates and Reaction Pathways in the Coupling Agent Mediated Phosphonamidation Reaction. Eur. J. Org. Chem. 2016, 3, 474–482. DOI: 10.1002/ejoc.201501244.
  • (a) Vallée, M. R. J.; Majkut, P.; Wilkening, I.; Weise, C.; Müller, G.; Hackenberger, C. P. R. Vinylphosphonites for Staudinger-Induced Chemoselective Peptide Cyclization and Functionalization. Org. Lett. 2011, 13, 5440–5443. DOI: 10.1039/C9SC01345H.
  • Cremlyn, R.; Akhtar, N. Some Heterocyclic Phosphorochloridates and the Construction of Other Heterocyclic Organophosphorus Compounds. Phosphorus Sulfur Relat. Elem. 1979, 7, 247–255. DOI: 10.1080/03086647908077476.
  • Banks, M. R.; Hudson, R. E. The Reaction between N-Methyl-p-Toluohydroxamic Acid and Tervalent Phosphorous Compounds: A Thermal PIII→PV Rearrangement Proceeding by a Radical Mechanism. J. Chem. Soc., Perkin Trans. 2 1989, 2, 463. DOI: 10.1039/p29890000463.
  • Fredriksen, K. A.; Amedjkouh, M. Investigation of Reactive Intermediates and Reaction Pathways in the Coupling Agent Mediated Phosphonamidation Reaction. Eur. J. Org. Chem. 2016, 2016, 474–482. DOI: 10.1002/ejoc.201501244.
  • Camp, D.; Healy, P. C.; Jenkins, I. D.; Skelton, B. W.; White, A. H. The Reaction of Diphenylphosphine Oxide and Diphenylphosphine with Dialkyl Azodicarboxylates. J. Chem. Soc., Perkin Trans. 1 1991, 1, 1323. DOI: 10.1039/p19910001323.
  • Zhu, R.; Pan, C. Q.; Gu, Z. H. A Catalyst-Free Synthesis of Phosphinic Amides Using O-Benzoylhydroxylamines. Org. Lett. 2015, 17, 5862–5865. DOI: 10.1021/acs.orglett.5b03056.
  • Chen, X. W.; Luo, W. J.; Wang, Y. L.; Li, Z. K.; Ma, X. R.; Peng, A. Y. Efficient Synthesis of Phosphonamidates through One-Pot Sequential Reactions of Phosphonites with Iodine and Amines. Chemistry 2020, 26, 14474–14480. DOI: 10.1002/chem.202002934.
  • Adler, P.; Pons, A.; Li, J.; Heider, J.; Brutiu, B. R.; Maulide, N. Chemoselective Activation of Diethyl Phosphonates: Modular Synthesis of Biologically Relevant Phosphonylated Scaffolds. Angew. Chem. Int. Ed. Engl. 2018, 57, 13330–13334. DOI: 10.1002/anie.201806343.
  • Tan, Y.; Han, Y. P.; Zhang, Y. C.; Zhang, H. Y.; Zhao, J.; Yang, S. D. Primary Amination of Ar2P(O)−H with (NH4)2CO3 as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Formation of Various P − N or P − O Bonds. J. Org. Chem. 2022, 87, 3254−3264. DOI: 10.1021/acs.joc.1c02933.
  • Wilkening, I.; Del Signore, G.; Hackenberger, C. P. R. Synthesis of Phosphonamidate Peptides by Staudinger Reactions of Silylated Phosphinic Acids and Esters. Chem. Commun. (Camb) 2011, 47, 349–351. DOI: 10.1039/c0cc02472d.
  • Kasper, M.-A.; Glanz, M.; Stengl, A.; Penkert, M.; Klenk, S.; Sauer, T.; Schumacher, D.; Helma, J.; Krause, E.; Cardoso, M. C.; et al. Cysteine-Selective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angew. Chem. Int. Ed. Engl. 2019, 58, 11625–11630. DOI: 10.1002/anie.201814715.
  • Keglevich, G.; Kiss, N. Z.; Körtvélyesi, T. Microwave-Assisted Functionalization of Phosphinic Acids: Amidations versus Esterifications. Heteroat. Chem. 2013, 24, 91–99. DOI: 10.1002/hc.21068.
  • Kiss, N. Z.; Simon, A.; Drahos, L.; Huben, K.; Jankowski, L.; Keglevich, G. Synthesis of 1-Amino-2,5-Dihydro-1H-Phosphole 1-Oxides and Their N-Phosphinoyl Derivatives, Bis(2,5-Dihydro-1H-Phosphol-1-yl)Amine P,P′-Dioxides. Synthesis 2012, 45, 199–204. DOI: 10.1055/s-0032-1316830.
  • Meazza, M.; Kowalczuk, A.; Shirley, L.; Yang, J. W.; Guo, H.; Rios, R. Organophotocatalytic Synthesis of Phosphoramidates. Adv. Synth. Catal. 2016, 358, 719–723. DOI: 10.1002/adsc.201501068.
  • Shen, B.-R.; Annamalai, P.; Bai, R.; Badsara, S. S.; Lee, C.-F. Blue LED-Mediated Syntheses of Arylazo Phosphine Oxides and Phosphonates via N-P Bond Formation. Org. Lett. 2022, 24, 5988–5993. DOI: 10.1021/acs.orglett.2c02251.
  • Deng, Y.; You, S. Q.; Ruan, M. Y.; Wang, Y.; Chen, Z. X.; Yang, G. C.; Gao, M. Electrochemical Regioselective Phosphorylation of Nitrogen-Containing Heterocycles and Related Derivatives. Adv. Synth. Catal. 2021, 363, 464–469. DOI: 10.1002/adsc.202000997.
  • Zhong, Z. J.; Xu, P.; Zhou, A. H. Electrochemical Phosphorylation of Arenols and Anilines Leading to Organophosphates and Phosphoramidates. Org. Biomol. Chem. 2021, 19, 5342–5347. DOI: 10.1039/d1ob00779c.
  • Wang, R.; Dong, X.; Zhang, Y.; Wang, B.; Xia, Y.; Abdukader, A.; Xue, F.; Jin, W.; Liu, C. Electrochemical Enabled Cascade Phosphorylation of N-H/O-H/S-H Bonds with P-H Compounds: An Efficient Access to P(O)-X Bonds. Chemistry 2021, 27, 14931–14935. DOI: 10.1002/chem.202102262.
  • Tan, C.; Liu, X. Y.; Jia, H. X.; Zhao, X. W.; Chen, J.; Wang, Z. Y.; Tan, J. J. Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)-H Compounds. Chemistry 2020, 26, 881–887. DOI: 10.1002/chem.201904237.
  • Wu, Y.; Chen, K.; Ge, X.; Ma, P. P.; Xu, Z. Y.; Lu, H. J.; Li, G. G. Redox-Neutral P(O)−N Coupling between P(O)−H Compounds and Azides via Dual Copper and Photoredox Catalysis. Org. Lett. 2020, 22, 6143–6149. DOI: 10.1021/acs.orglett.0c02207.
  • Yu, K.-C.; Li, H.; Tu, Y.-H.; Zhao, H.; Hu, X.-G. Metallaphotoredox-Enabled Construction of the P(O)–N Bond from Aromatic Amines and P(O)–H Compounds. Org. Lett. 2022, 24, 9130–9134. DOI: 10.1021/acs.orglett.2c03860.
  • Chong, C. C.; Hirao, H.; Kinjo, R. A Concerted Transfer Hydrogenolysis: 1,3,2-Diazaphospholene-Catalyzed Hydrogenation of N = N Bond with Ammonia-Borane. Angew. Chem. Int. Ed. Engl. 2014, 53, 3342−3346. DOI: 10.1002/ange.201400099.
  • Zheng, L.; Cai, L. H.; Mei, W. J.; Liu, G. P.; Deng, L.; Zou, X. Y.; Zhuo, X. Y.; Zhong, Y.; Guo, W. Copper Catalyzed Phosphorylation of N,N-Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphoryl Hydrazides as Potential Anticancer Agents. J. Org. Chem. 2022, 87, 6224–6236. DOI: 10.1021/acs.joc.2c00452.
  • Borner, A., ed., Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications; Wiley-VCH, Weinheim, 2008; Vols. 1–3.
  • Moncarz, J. R.; Laritcheva, N. F.; Glueck, D. S. Palladium-Catalyzed Asymmetric Phosphination: Enantioselective Synthesis of a P-Chirogenic Phosphine. J. Am. Chem. Soc. 2002, 124, 13356–13357. DOI: 10.1021/ja0267324.
  • Trost, B. M.; Spohr, S. M.; Rolka, A. B.; Kalnmals, C. Desymmetrization of Phosphinic Acids via Pd-Catalyzed Asymmetric Allylic Alkylation: Rapid Access to P-Chiral Phosphinates. J. Am. Chem. Soc. 2019, 141, 14098–14103. DOI: 10.1021/jacs.9b07340.
  • Du, Z. J.; Guan, J.; Wu, G. J.; Xu, P.; Gao, L.-X.; Han, F. S. Pd(II)-Catalyzed Enantioselective Synthesis of P-Stereogenic Phosphinamides via Desymmetric C − H Arylation. J. Am. Chem. Soc. 2015, 137, 632–635. DOI: 10.1021/ja512029x.
  • Chan, V. S.; Stewart, I. C.; Bergman, R. G.; Toste, F. D. Asymmetric Catalytic Synthesis of P-Stereogenic Phosphines via a Nucleophilic Ruthenium Phosphido Complex. J. Am. Chem. Soc. 2006, 128, 2786–2787. DOI: 10.1021/ja058100y.
  • Harvey, J. S.; Malcolmson, S. J.; Dunne, K. S.; Meek, S. J.; Thompson, A. L.; Schrock, R. R.; Hoveyda, A. H.; Gouverneur, V. Enantioselective Synthesis of P-Stereogenic Phosphinates and Phosphine Oxides by Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis. Angew. Chem. Int. Ed. Engl. 2009, 48, 762–766. DOI: 10.1002/ange.200805066.
  • Genet, C.; Canipa, S. J.; O'Brien, P.; Taylor, S. Catalytic Asymmetric Synthesis of Ferrocenes and P-Stereogenic Bisphosphines. J. Am. Chem. Soc. 2006, 128, 9336–9337. DOI: 10.1021/ja062616f.
  • Beaud, R.; Phipps, R. J.; Gaunt, M. J. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines. J. Am. Chem. Soc. 2016, 138, 13183–13186. DOI: 10.1021/jacs.6b09334.
  • Liu, X. T.; Zhang, Y. Q.; Han, X. Y.; Sun, S. P.; Zhang, Q. W. Ni-Catalyzed Asymmetric Allylation of Secondary Phosphine Oxides. J. Am. Chem. Soc. 2019, 141, 16584–16589. DOI: 10.1021/jacs.9b08734.
  • Cristóbal-Lecina, E.; Etayo, P.; Doran, S.; Revés, M.; Martín-Gago, P.; Grabulosa, A.; Costantino, A. R.; Vidal-Ferran, A.; Riera, A.; Verdaguer, X. MaxPHOS Ligand: PH/NH Tautomerism and Rhodium-Catalyzed Asymmetric Hydrogenations. Adv. Synth. Catal. 2014, 356, 795–804. DOI: 10.1002/adsc.201300662.
  • Sun, Y.; Cramer, N. Tailored Trisubstituted Chiral Cpx RhIII Catalysts for Kinetic Resolutions of Phosphinic Amides. Chem. Sci. 2018, 9, 2981–2985. DOI: 10.1039/c7sc05411d.
  • Wang, G.; Shen, R.; Xu, Q.; Goto, M.; Zhao, Y. F.; Han, L. B. Stereospecific Coupling of H-Phosphinates and Secondary Phosphine Oxides with Amines and Alcohols: A General Method for the Preparation of Optically Active Organophosphorus Acid Derivatives. J. Org. Chem. 2010, 75, 3890–3892. DOI: 10.1021/jo100473s.
  • Xiong, B. Q.; Zhou, Y. B.; Zhao, C.; Goto, M.; Yin, S. F.; Han, L. B. Systematic Study for the Stereochemistry of the Atherton-Todd Reaction. Tetrahedron Lett. 2013, 69, 9373–9380. DOI: 10.1016/j.tet.2013.09.001.
  • Zhou, Y. B.; Yang, J.; Chen, T. Q.; Yin, S. F.; Han, D. Q.; Han, L. B. Stereospecific Aerobic Oxidative Dehydrocoupling of P(O)–H Bonds with Amines Catalyzed by Copper. Bull. Chem. Soc. Jpn. 2014, 87, 400–402. DOI: 10.1246/bcsj.20130310.
  • Balázs, L. B.; Huang, Y.; Khalikuzzaman, J. B.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Catalytic Asymmetric Diarylphosphine Addition to α‑Diazoesters for the Synthesis of P-Stereogenic Phosphinates via P*-N Bond Formation. J. Org. Chem. 2020, 85, 14763–14771. DOI: 10.1021/acs.joc.0c00181.
  • Cramer, J.; Klebe, G. An Allyl Protection and Improved Purification Strategy Enables the Synthesis of Functionalized Phosphonamidate Peptides. Synthesis 2017, 49, 1857–1866. DOI: 10.1055/s-0036-1588393.
  • Gopalakrishnan, J. Aminophosphines: Their Chemistry and Role as Ligands and Synthons. Appl. Organometal. Chem. 2009, 23, 291–318. DOI: 10.1002/aoc.1515.
  • Fei, Z.; Biricik, N.; Zhao, D.; Scopelliti, R.; Dyson, P. J. Transformation between Diphosphinoamines and Iminobiphosphines: A Reversible PNP ↔ NP − P Rearrangement Triggered by Protonation/Deprotonation. Inorg. Chem. 2004, 43, 2228–2230. DOI: 10.1021/ic049850w.
  • Gatineau, D.; Giordano, L.; Buono, G. Bulky, Optically Active P-Stereogenic Phosphine-Boranes from Pure H-Menthylphosphinates. J. Am. Chem. Soc. 2011, 133, 10728–10731. DOI: 10.1021/ja2034816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.