55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, spectral and structural characterization of iron chalcogenomalonato complexes CpFe(CO)2ECOCH2CO2R (E = S, Se)

ORCID Icon, & ORCID Icon
Pages 996-1001 | Received 16 Feb 2023, Accepted 09 May 2023, Published online: 15 Jun 2023

References

  • Aguirre-Quintana, L. M.; Yang, Y.; Ramanathan, A.; Jiang, N.; Bacsa, J.; Maron, L.; Pierre, H. S. Chalcogen-Atom Abstraction Reactions of a Di-Iron Imidophosphorane Complex. Chem. Commun. (Camb.) 2021, 57, 6664–6667. DOI: 10.1039/D1CC02195H.
  • Wei, P.; Chen, Z.; Wu, J.; Li, L.; Yang, Y.; Hao, Z.; Zhang, X.; Li, J.; Liu, L. Recent Advances in Cobalt-, Nickel-, and Iron-Based Chalcogen Compounds as Counter Electrodes in Dye-Sensitized Solar Cells. Chin. J. Cat. 2019, 40, 1282–1297. DOI: 10.1016/S1872-2067(19)63361-9.
  • Shieh, M.; Lai, Y.-W. Chalcogen-Bridging Iron Carbonyl Complexes: Cluster Growth and Reactivity Comparison. J. Chin. Chem. Soc. 2002, 49, 851–859. DOI: 10.1002/jccs.200200121.
  • Stemshorn, A. K.; Vohra, Y. K.; Wu, P. M.; Hsu, F. C.; Huang, Y. L.; Wu, M. K.; Yeh, K. W. Structural Phase Transformations in Iron-Chalcogen under High Pressures. Condensed Mat. 2011, XIV, 1105. DOI: 10.48550/arXiv.1105.0908.
  • Tsaousis, A. D. On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes. Front. Microbiol. 2019, 10, 2498–2490. DOI: 10.3389/fmicb.2019.02478.
  • Roche, B.; Aussel, L.; Ezraty, B.; Mandin, P.; Py, B.; Barras, F. Iron/Sulfur Proteins Biogenesis in Prokaryotes: Formation, Regulation and Diversity. Biochim. Biophys. Acta 2013, 1827, 455–469. DOI: 10.1016/j.bbabio.2012.12.010.
  • Esquilin-Lebron, K.; Dubrac, S.; Barras, F.; Boyd, J. M. Bacterial Approaches for Assembling Iron-Sulfur Proteins. Bacteriol. 2021, 12, e02425-21. DOI: 10.1128/mBio.02425-21.
  • Schoonen, M. A. A.; Xu, Y. Nitrogen Reduction under Hydrothermal Vent Conditions: Implications for the Prebiotic Synthesis of C–H–O–N Compounds. Astrobiology 2001, 1, 133–142. DOI: 10.1089/153110701753198909.
  • Cody, G. D.; Boctor, N. Z.; Brandes, J. A.; Filley, T. R.; Hazen, R. M.; Yoder, H. S. Assaying the Catalytic Potential of Transition Metal Sulfides for Abiotic Carbon Fixation. Geochim. Cosmochim. Acta 2004, 68, 2185–2196. DOI: 10.1016/j.gca.2003.11.020.
  • Cody, G. D. Transition Metal Sulfides and the Origins of Metabolism. Annu. Rev. Earth Planet. Sci. 2004, 32, 569–599. DOI: 10.1146/annurev.earth.32.101802.120225.
  • Murphy, R.; Strongin, D. R. Surface Reactivity of Pyrite and Related Sulfides. Surf. Sci. Rep. 2009, 64, 1–45. DOI: 10.1016/j.surfrep.2008.09.002.
  • Ramos-Inza, S.; Plano, D.; Sanmartín, C. Metal-Based Compounds Containing Selenium: An Appealing Approach towards Novel Therapeutic Drugs with Anticancer and Antimicrobial Effects. Eur. J. Med. Chem. 2022, 244, 114834. DOI: 10.1016/j.ejmech.2022.114834.
  • Hauksdóttir, H. L.; Webster, T. J. Selenium and Iron Oxide Nanocomposites for Magnetically-Targeted anti-Cancer Applications. J. Biomed. Nanotechnol. 2018, 14, 510–525. DOI: 10.1166/jbn.2018.2521.
  • Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Malevu, T. D.; Sochor, J.; Baron, M.; Melcova, M.; Zidkova, J.; Kizek, R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal species-A Critical Review. IJMS. 2017, 18, 2209. DOI: 10.3390/ijms18102209.
  • Dukueva, M. Z.; Abdullayeva, G. R.; Kagirov, G. M.; Babaev, Z. R.; Shapovalov, L. O.; Danenko, J. I. Biological Significance and Toxicological Properties of Iron, Selenium and Iodine. Pharmacophore 2022, 13, 112–118. DOI: 10.51847/LYLLukyZLJ.
  • Köhrle, J. Selenium, Iodine and Iron–Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. IJMS. 2023, 24, 3393. DOI: 10.3390/ijms24043393.
  • Agonigi, G.; Batchelor, L. K.; Ferretti, E.; Schoch, S.; Bortoluzzi, M.; Braccini, S.; Chiellini, F.; Biancalana, L.; Zacchini, S.; Pampaloni, G.; et al. Mono-, Di- and Tetra-Iron Complexes with Selenium or Sulfur Functionalized Vinyliminium Ligands: Synthesis, Structural Characterization and Antiproliferative Activity. Molecules 2020, 25, 1656–1667. DOI: 10.3390/molecules25071656.
  • Maslat, A. O.; Jibril, I.; Abussaud, M.; Abd-Alhadi, E. H.; Hamadah, Z. Synthesis and Biological Study of a New Series of Bifunctional Organoiron Thio- and Seleno-Terephthalate Derivatives (C5H5)Fe(CO)2ECO(C6H4)COX (E = S, X = R2N, RNH, NH2, OH, Cl; E = Se, X = RNH, RS, RCOO, NH2, OH, Cl). Appl. Organometal. Chem. 2002, 16, 44–50. DOI: 10.1002/aoc.257.
  • Maslat, A.; Jibril, I.; Mizyed, S. Antimutagenic Activities of Two Suspected Anticarcinogenic Bifunctional Organoiron Seleno-Terephthalate Derivatives. Drug Chem. Toxicol. 2010, 33, 254–260. DOI: 10.3109/014805409033492.
  • Wang, C.; Lai, Z.; Huang, G.; Pan, H.-J. Current State of [Fe]-Hydrogenase and Its Biomimetic Models. Chemistry 2022, 28, e202201499. DOI: 10.1002/chem.202201499.
  • Amaro-Gahete, J.; Esquive, D.; Pavliuk, M. V.; Jiménez-Sanchidrián, C.; Tian, H.; Ott, S.; Romero-Salguero, F. J. Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica. Catalysts 2022, 12, 254. DOI: 10.3390/catal12030254.
  • Harb, M. K.; Windhager, J.; Daraosheh, A.; Görls, H.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El‐khateeb, M.; Weigand, W. Phosphane‐ and Phosphite‐Substituted Diiron Diselenolato Complexes as Models for [FeFe]‐Hydrogenases. Eur. J. Inorg. Chem. 2009, 2009, 3414–3420. DOI: 10.1002/ejic.200900252.
  • Harb, M. K.; Alshurafa, H.; El‐khateeb, M.; Al‐Zuheiri, A.; Görls, H.; Abul‐Futouh, H.; Weigand, W. [FeFe]‐Hydrogenase Models Containing Long Diselenolato Linkers. ChemSelect 2018, 3, 8867–8873. DOI: 10.1002/slct.201801704.
  • El‐khateeb, M.; Abul‐Futouh, H.; Alshurafa, H.; Görls, H.; Weigand, W. Influence of Bidentate Phosphine Ligands on the Chemistry of [FeFe]-Hydrogenase Model: Insight into Molecular Structures and Electrochemical Characteristics. Appl. Organomet. Chem. 2020, e594. DOI: 10.1002/aoc.5940.
  • Almazahreh, L. R.; Imhof, W.; Talarmin, J.; Schollhammer, P.; Görls, H.; El-khateeb, M.; Weigand, W. Ligand Effects on the Electrochemical Behavior of [Fe2(CO)5(L){μ-(SCH2)2(Ph)P = O}] (L = PPh3, P(OEt)3) Hydrogenase Model Complexes. Dalton Trans. 2015, 44, 7177–7189. DOI: 10.1039/c5dt00064e.
  • El-khateeb, M.; Asali, K.; Al-Juneidi, B.; Abul-Futouh, H.; Görls, H.; Weigand, W. Vinylic-Thiocarboxylate Complexes of Iron: Synthesis, Characterization and Reactions. J. Chem. Sci. 2020, 132, 1. DOI: 10.1007/s12039-019-1720-8.
  • Al-Jazzazi, T.; El-khateeb, M.; Quraan, L.; Abul-Futouh, H.; Görls, H.; Weigand, W. Half-Sandwich Iron Complexes Bearing Vinyl-Selenocarboxylato Ligands. J. Chem. Sci. 2020, 132, 23. DOI: 10.1007/s12039-019-1732-4.
  • El-khateeb, M.; Shaver, A.; Lebuis, A.-M. The Synthesis and Structure of the Thiosulfonato Iron Complexes CpFe(CO)2SS(O)2R. J. Organomet. Chem. 2001, 622, 293–296. DOI: 10.1016/S0022-328X(00)00655-0.
  • El-khateeb, M.; Obidat, T. The First Selenosulfonate Complexes CpFe(CO)2SeSO2R: Preparation and Structure of CpFe(CO)2SeSO2C6H5. Polyhedron 2001, 20, 2393–2396. DOI: 10.1016/S0277-5387(01)00831-2.
  • El-khateeb, M.; Asali, K.; Lataifeh, A. Half Sandwich Iron S-Bonded Mono-Thiocarbonate Complexes: Structure of CpFe(CO)2SCO2Et. Polyhedron 2003, 22, 3105–3108. DOI: 10.1016/S0277-5387(03)00465-0.
  • El-khateeb, M. Iron Se-Bonded Mono-Selenocarbonates CpFe(CO)2SeCO2R: The First Selenocarbonate Complexes. Inorg. Chim. Acta 2004, 357, 4341–4344. DOI: 10.1016/j.ica.2004.01.023.
  • El-khateeb, M.; Asali, K.; Lataifeh, A. Iron Dithiocarbonate Complexes: Structure of CpFe(CO)2SC(S)O-4-C6H4Cl. Polyhedron 2006, 25, 1695–1699. DOI: 10.1016/j.poly.2005.11.007.
  • El-khateeb, M. Selenothiocarbonate Complexes of Iron: Structure of CpFe(CO)2SeC(S)O-4-C6H4Cl. Polyhedron 2006, 25, 1386–1390. DOI: 10.1016/j.poly.2005.09.024.
  • El-khateeb, M.; Roller, A. Synthesis and Structures of CpFe(CO)2(κ1E-ECS2Ph) and CpFe(CO)(κ2-E,S-ECS2Ph) Where E = S, Se. Polyhedron 2007, 26, 3920–3924. DOI: 10.1016/j.poly.2007.04.010.
  • El-khateeb, M.; Kumar, R.; Yousuf, S. Half Sandwich Iron S-Alkyl Dithiocarbonato Complexes: Synthesis, Characterization and Reactivity. J. Mol. Struc 2020, 1211, 128092. DOI: 10.1016/j.molstruc.2020.128092.
  • El-khateeb, M.; Abul-Futouh, H.; Görls, H.; Weigand, W. Towards the Synthesis of Piano-Stool Iron Complexes Mediated by S-Alkyl Selenothiocarbonato Ligands and Their Substitution Reactions. Monatsh. Chem. 2019, 150, 1461–1467. DOI: 10.1007/s00706-019-02470-y.
  • El-khateeb, M.; Görls, H.; Weigand, W. O-Alkylthio- and O-Alkylselenooxalate Iron Complexes: Structures of CpFe(CO)2ECOCO2Me and [CpFe(CO)2ECO]2. Inorg. Chim. Acta 2007, 360, 705–709. DOI: 10.1016/j.ica.2006.08.002.
  • El-Hinnawi, M. A.; El-khateeb, M.; Jibril, I.; Abu-Orabi, S. T. Organometallic Sulfur Complexes. IV. Synthesis and Characterization of [Fe(ButC5H4)(CO)2]2 and [Fe(1,3-di-ButC5H3)(CO)2]2. And the S-Bonded Thiocarboxylate Derivatives, Fe(ButC5H4)(CO)2SCOR and Fe(1,3-di-ButC5H3)(CO)2SCOR. Synth. Reac. Inorg. Met. Org. Chem. 1989, 19, 809–826. DOI: 10.1080/00945718909709871.
  • El-khateeb, M.; Yousuf, S.; Kumar, R. Pentamethylcyclopentadienyl Iron Thiocarboxylato Complexes: Synthetic and Characterization Study. J. Sulfur. Chem. 2022, 43, 507–518. DOI: 10.1080/17415993.2022.2083453.
  • El-Hinnawi, M. A.; Sumadi, M. L.; Esmadi, F. T.; Jibril, I.; Imhof, W.; Huttner, G. Organoruthenium Sulfur Complexes. Synthesis of (μ-S5([RuCp(CO)2]2 and Its Reaction with Acid Chlorides. Preparation of RuCp(CO)2SCOR and Molecular Structure of RuCp(CO)2SCO(2-O2NC6H4). J. Organomet. Chem. 1989, 377, 373–381. DOI: 10.1016/0022-328X(89)80099-3.
  • Esmadi, F. T.; Sumadi, M. L. Organoruthenium Selenium Complexes. Synthesis of Ru2(CO)2(Cp)2Se3 and Its Reaction with Acid Chlorides. Synth. Reac. Inorg. Met.-Org. Chem. 1994, 24, 715–722. DOI: 10.1080/00945719408001296.
  • El-khateeb, M.; Alsabah, D.; Hijazi, A. K.; Moriyama, H.; Yoshida, Y.; Kitagawa, H. Mono- and di-Thiocarbonato Complexes of Ruthenium CpRu(CO)2SC(E)E′R (E, E′= O, S). Inorg. Chim. Acta 2022, 534, 120824. DOI: 10.1016/j.ica.2022.120824.
  • El-khateeb, M.; Görls, H.; Weigand, W. Cyclopentadienyl Tungsten Complexes with Thiocarboxylate and Thiosulfonate Ligands: Structures of CpW(CO)3SCOPh and CpW(CO)3SSO2-4-C6H4Cl. J. Organomet. Chem. 2006, 691, 5804–5808. DOI: 10.1016/j.jorganchem.2006.10.008.
  • El-khateeb, M.; Rüffer, T.; Lang, H. Molybdenum S-Bonded Mono-Thiocarboxylate Complexes CpMo(CO)3SCOR: Structure of CpMo(CO)3SCOPh. Polyhedron 2006, 25, 3413–3416. DOI: 10.1016/j.poly.2006.06.021.
  • El-khateeb, M.; Asali, K.; Abu-Salem, T.; Welter, R. Synthesis and Characterization of Cyclopentadienyltricarbonyl Tungsten Selenocarboxylate and Selenosulfonate Complexes. Inorg. Chim. Acta 2006, 359, 4259–4264. DOI: 10.1016/j.ica.2006.06.019.
  • El-Hinnawi, M. A.; Aruffo, A. A.; Santarsiero, B. D.; McAlister, D. R.; Schomaker, V. Organometallic Sulfur Complexes. 1. Syntheses, Structures, and Characterizations of Organoiron Sulfane Complexes (µ-Sx)[(η5-C5H5)Fe(CO)2]2 (x = 1-4). Inorg. Chem. 1983, 22, 1585–1590. DOI: 10.1021/ic00153a004.
  • Herrmann, W. A.; Rohrmann, J.; Hecht, H. Mehrfachbindungen Zwischen Hauptgruppenelementen Und Übergangsmetallen: XVII. Selen- Und Tellur-Brücken in Organometallkomplexen: Aufbau, Protonierung Und Methylierung. J. Organomet. Chem. 1985, 290, 53–61. DOI: 10.1016/0022-328X(85)80148-0.
  • Bruker AXS. Apex4, SADABS and TWINABS, Bruker AXS Inc.: Madison, WI, 2001.
  • Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.