276
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Phospha-Mannich reactions of phosphinous acids R2P–OH and their derivatives

ORCID Icon
Pages 867-923 | Received 24 Apr 2023, Accepted 01 Jul 2023, Published online: 20 Jul 2023

References

  • Moiseev, D. V.; James, B. R. Phospha-Mannich Reactions of PH3 and Its Analogs. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 277–326. DOI: 10.1080/10426507.2022.2036150.
  • Moiseev, D. V.; James, B. R. Phospha-Mannich Reactions of RPH2, R2PH, and R3P. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 327–391. DOI: 10.1080/10426507.2022.2036149.
  • Moiseev, D. V.; James, B. R. Tetrakis(Hydroxymethyl)Phosphonium Salts: Their Properties, Hazards and Toxicities. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 263–279. DOI: 10.1080/10426507.2019.1686379.
  • Moiseev, D. V.; James, B. R. Syntheses and Rearrangements of Tris(Hydroxymethyl)Phosphine and Tetrakis(Hydroxymethyl)Phosphonium Salts. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 687–712. DOI: 10.1080/10426507.2020.1764957.
  • Karasik, A. A.; Balueva, A. S.; Sinyashin, O. G. An Effective Strategy of P,N-Containing Macrocycle Design. C. R. Chimie 2010, 13, 1151–1167. DOI: 10.1016/j.crci.2010.04.006.
  • Karasik, A. A.; Balueva, A. S.; Musina, E. I.; Sinyashin, O. G. Chelating Cyclic Aminomethylphosphines and Their Transition Metal Complexes as a Promising Basis of Bioinspired Mimetic Catalysts. Mendeleev Commun. 2013, 23, 237–248. DOI: 10.1016/j.mencom.2013.09.001.
  • Musina, E. I.; Karasik, A. A.; Sinyashin, O. G.; Nikonov, G. N. Heterocyclic Phosphines with P-C-X Fragments (X = O, N, P). Adv. Heterocycl. Chem. 2015, 117, 83–130. DOI: 10.1016/bs.aihch.2015.10.001.
  • Karasik, A. A.; Musina, E. I.; Balueva, A. S.; Strelnik, I. D.; Sinyashin, O. G. Cyclic Aminomethylphosphines as Ligands. Rational Design and Unpredicted Findings. Pure Appl. Chem. 2017, 89, 293–309. DOI: 10.1515/pac-2016-1022.
  • Bálint, E.; Tajti, Á.; Tripolszky, A.; Keglevich, G. Synthesis of Platinum, Palladium and Rhodium Complexes of α-Aminophosphine Ligands. Dalton Trans. 2018, 47, 4755–4778. DOI: 10.1039/C8DT00178B.
  • Mazurkiewicz, R.; Kuźnik, A.; Grymel, M.; Październiok-Holewa, A. α-Amino Acid Derivatives with a Cα-P Bond in Organic Synthesis. Arkivoc 2007, 2007, 193–216. DOI: 10.3998/ark.5550190.0008.614.
  • Yakhvarov, D.; Caporali, M.; Gonsalvi, L.; Latypov, S.; Mirabello, V.; Rizvanov, I.; Sinyashin, O.; Stoppioni, P.; Peruzzini, M. Experimental Evidence of Phosphine Oxide Generation in Solution and Trapping by Ruthenium Complexes. Angew. Chem. Int. Ed. Engl. 2011, 50, 5370–5373. DOI: 10.1002/anie.201100822.
  • Yakhvarov, D. G.; Gorbachuk, E. V.; Kagirov, R. M.; Sinyashin, O. G. Electrochemical Reactions of White Phosphorus. Russ. Chem. Bull. 2012, 61, 1300–1312. DOI: 10.1007/s11172-012-0176-5.
  • Gorbachuk, E. V.; Khayarov, K. R.; Sinyashin, O. G.; Yakhvarov, D. G. Effect of a Sacrificial Anode Material on the Electrochemical Generation of Phosphane Oxide (H3PO). Mendeleev Commun 2014, 24, 334–335. DOI: 10.1016/j.mencom.2014.11.005.
  • Troev, K. D. Reactivity of P–H Group of Phosphine Oxides. In Reactivity of P-H Group of Phosphorus Based Compounds; Troev, K. D., Ed.; Academic Press: Cambridge, MA, 2018; pp. 145–198 DOI: 10.1016/B978-0-12-813834-2.00003-2.
  • Osadchenko, I. M.; Tomilov, A. P. Electrochemical Method for Preparing Tris(α-Hydroxyalkyl)Phosphine Oxide. Zh. Obshch. Khim. 1970, 40, 698–699.
  • Gorbachuk, E. V.; Badeeva, E. K.; Babaev, V. M.; Rizvanov, I. K.; Zinnatullin, R. G.; Pavlov, P. O.; Khayarov, K. R.; Yakhvarov, D. G. Reactivity of Phosphine Oxide H3PO in the Reactions with Ketones. Russ. Chem. Bull. 2016, 65, 1289–1294. DOI: 10.1007/s11172-016-1450-8.
  • Gorbachuk, E. V.; Badeeva, E. K.; Katsyuba, S. A.; Pavlov, P. O.; Khayarov, K. R.; Sinyashin, O. G.; Yakhvarov, D. G. Thermal Stability of Primary and Secondary Phosphine Oxides Formed as a Reaction of Phosphine Oxide with Ketones. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1480–1481. DOI: 10.1080/10426507.2016.1212047.
  • Gorbachuk, E.; Badeeva, E.; Gubaidullin, A.; Samigullina, A.; Voloshina, A.; Sapunova, A.; Hey-Hawkins, E.; Sinyashin, O.; Yakhvarov, D. Bis(α-Hydroxycycloalkyl)Phosphine Oxides Obtained from White Phosphorus via Phosphine Oxide H3PO: Synthesis, Molecular Structure, Coordination Properties and Biological Activity. ChemPlusChem 2020, 85, 958–962. DOI: 10.1002/cplu.202000220.
  • Maier, L. α‐Aminoalkylation of White Phosphorus. Angew. Chem. Int. Ed. Engl. 1965, 4, 527–527. DOI: 10.1002/anie.196505272.
  • Maier, L. Organische Phosphorverbindungen XXVIII. Die α-Aminoalkylierung von elementarem weissem Phosphor. Eine einfache Methode zur Darstellung von tertiären Phosphinoxiden, Phosphinsäuren und Phosphonsäuren. Helv. Chim. Acta 1967, 50, 1723–1741. DOI: 10.1002/hlca.19670500704.
  • Maier, L. Organische Phorsphorverbindungen, XXXV. Die α-Aminoalkylierung von elementarem weissem Phosphor und von Biphosphinen. Darstellung und Reaktionen von dialkylaminomethyl-substituierten tertiären Phosphinoxiden [1]. Helv. Chim. Acta 1968, 51, 1608–1616. DOI: 10.1002/hlca.19680510716.
  • Maier, L. Verfahren zur Herstellung von phosphorhaltigen Mannich-Basen. Ger. Patent 1,292,654, Apr 17, 1969.
  • Maier, L. Phosphorus-Containing Mannich Bases. Br. Patent 1,120,374, Jul 17, 1968.
  • Mironova, Z. N.; Tsvetkov, E. N.; Petrovskaya, L. I.; Negrebetsky, V. V.; Nikolaev, A. V.; Kabachnik, M. I. Syntheses Based on Tetramethylolphosphonium Chloride. Aminomethylphosphines and Their Oxides. Zh. Obshch. Khim. 1972, 42, 2152–2158.
  • Frank, A. W.; Drake, G. L. Aniline Derivatives of Tetrakis(Hydromethyl)Phosphonium Chloride. J. Org. Chem. 1972, 37, 2752–2755. DOI: 10.1021/jo00982a030.
  • Daigle, D. J.; Pepperman, A. B.; Vail, S. L. Synthesis of a Monophosphorus Analog of Hexamethylenetetramine. J. Heterocyclic Chem. 1974, 11, 407–408. DOI: 10.1002/jhet.5570110326.
  • Fluck, E.; Foerster, J. E. Monophosphaurotropin (1,3,5-Triaza-7-Phosphaadamantan) und Einige Derivate. Chemiker Ztg. 1975, 6, no–no. DOI: 10.1002/chin.197534306.
  • Daigle, D. J.; Frank, A. W.; Kullman; R. M. H. Finishing with Ureidophosphorus: A Compound, not a Condensate. J. Fire Retard. Chem. 1979, 6, 276–284.
  • Frank, A. W. Synthesis of Tris(Aminomethyl)Phosphine Oxide and Its Carbon Dioxide Adduct from Tetrakis(Hydroxymethyl)Phosphonium Salts via Their Methyl Carbamate Derivatives. Can. J. Chem. 1981, 59, 27–33. DOI: 10.1139/v81-005.
  • Ma, C.; Qiu, S.; Yu, B.; Wang, J.; Wang, C.; Zeng, W.; Hu, Y. Economical and Environment-Friendly Synthesis of a Novel Hyperbranched Ploy(Aminomethylphosphine Oxide-Amine) as Co-Curing Agent for Simultaneous Improvement of Fire Safety, Glass Transition Temperature and Toughness of Epoxy Resins. Chem. Eng. J. 2017, 322, 618–631. DOI: 10.1016/j.cej.2017.04.070.
  • Starosta, R.; Bazanów, B.; Barszczewski, W. Chalcogenides of the Aminomethylphosphines Derived from 1-Methylpiperazine, 1-Ethylpiperazine and Morpholine: NMR, DFT and Structural Studies for Determination of Electronic and Steric Properties of the Phosphines. Dalton Trans. 2010, 39, 7547–7555. DOI: 10.1039/c0dt00037j.
  • Daigle, D. J.; Decuir, T. J.; Robertson, J. B.; Darensbourg, D. J. 1,3,5-Triaza-7-Phosphatricyclo[3.3.1.13,7]Decane and Derivatives. In Inorganic Syntheses; Darensbourg, M. Y., Ed.; John Wiley & Sons: New York, 1998; Vol. 32, pp. 40–45. DOI: 10.1002/9780470132630.ch6.
  • Sarfo, K.; Petach, H. H.; Henderson, W. Polymeric Phosphine Oxide Polyether-Derived Copolymer as a Support for Urease Immobilization. Enzyme Microb. Technol. 1995, 17, 804–808. DOI: 10.1016/0141-0229(94)00092-6.
  • Henderson, W.; Petach, H. H.; Bonnington, L. S. Poly(Phosphine Oxides) as Supports for Enzyme Immobilisation. Eur. Polym. J. 1995, 31, 981–985. DOI: 10.1016/0014-3057(95)00054-2.
  • Frank, A. W. Synthesis and Properties of Condensed Ureidomethyl Phosphonium Salts. Phosphorus Sulfur Relat. Elem. 1981, 10, 147–152. DOI: 10.1080/03086648108077497.
  • Frank, A. W.; Daigle, D. J. Triacidic Salts of Tris(Aminomethyl)Phosphines and Their Oxides. Phosphorus Sulfur Relat. Elem. 1981, 10, 255–259. DOI: 10.1080/03086648108077514.
  • Tan, Z.-W.; Sun, J.; Wu, C.-Y.; Qiu, J.-J.; Liu, C.-M. Phosphorus-Containing Polymers from THPS. IV: Synthesis and Properties of Phosphorus-Containing Polybenzoxazines as a Green Route for Recycling Toxic Phosphine (PH3) Tail Gas. J. Hazard Mater. 2017, 322, 540–550. DOI: 10.1016/j.jhazmat.2016.10.021.
  • Sivriev, H.; Kaleva, V.; Borissov, G.; Zabski, L.; Jedlinski, Z. Rigid Polyurethane Foams with Reduced Flammability, Modified with Phosphorus- and Nitrogen-Containing Polyol, Obtained from Tetrakis(Hydroxymethyl)Phosphonium Chloride. Eur. Polym. J. 1988, 24, 365–370. DOI: 10.1016/0014-3057(88)90200-5.
  • Starosta, R.; Komarnicka, U. K.; Puchalska, M.; Barys, M. Solid State Luminescence of Copper(I) (Pseudo)Halide Complexes with Neocuproine and Aminomethylphosphanes Derived from Morpholine and Thiomorpholine. New J. Chem. 2012, 36, 1673–1683. DOI: 10.1039/c2nj40229g.
  • Vojtíšek, P.; Podlahová, J.; Malý, K.; Hašek, J. Effect of Coordination on the Structure of Tris(N,N-Dimethylaminomethyl)Phosphine Oxide. Collect. Czech. Chem. Commun. 1993, 58, 1354–1362. DOI: 10.1135/cccc19931354.
  • Vojtíšek, P.; Císařová, I. Complexes of Tris(N-Piperidinomethyl)Phosphine Oxide with Zinc and Cadmium. Collect. Czech. Chem. Commun. 1996, 61, 1321–1334. DOI: 10.1135/cccc19961321.
  • Frost, B. J.; Harkreader, J. L.; Bautista, C. M. Synthesis and Solid State Structure of Co(II) Complexes of O = PTA. Inorg. Chem. Commun. 2008, 11, 580–583. DOI: 10.1016/j.inoche.2008.02.017.
  • Gavette, J. V.; Lara, J.; Reling, L. L.; Haley, M. M.; Johnson, D. W. Lithium-Selective Phosphine Oxide-Based Ditopic Receptors Show Enhanced Halide Binding upon Alkali Metal Ion Coordination. Chem. Sci. 2013, 4, 585–590. DOI: 10.1039/C2SC21501B.
  • Paúrová, M.; Císařová, I.; Lukeš, I.; Kotek, J. Transition Metal Complexes of Tris(Aminomethyl)Phosphine Oxide (Tampo) – Thermodynamic and X-Ray Diffraction Studies. Inorg. Chim. Acta 2018, 469, 217–226. DOI: 10.1016/j.ica.2017.09.034.
  • Gavette, J. V.; Lara, J.; Berryman, O. B.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. Lithium Cation Enhances Anion Binding in a Tripodal Phosphine Oxide-Based Ditopic Receptor. Chem. Commun. (Camb.) 2011, 47, 7653–7655. DOI: 10.1039/C1CC12475G.
  • Śliwa, E. I.; Nesterov, D. S.; Kirillova, M. V.; Kłak, J.; Kirillov, A. M.; Smoleński, P. A 3D MOF Based on Adamantoid Tetracopper(II) and Aminophosphine Oxide Cages: Structural Features and Magnetic and Catalytic Properties. Inorg. Chem. 2021, 60, 9631–9644. DOI: 10.1021/acs.inorgchem.1c00868.
  • Coburn, K. M.; Hardy, D. A.; Patterson, M. G.; McGraw, S. N.; Peruzzi, M. T.; Boucher, F.; Beelen, B.; Sartain, H. T.; Neils, T.; Lawrence, C. L.; et al. f-Element Coordination and Extraction Selectivity of a Carbamoylmethylphosphine Oxide Ligand Based on a Tripodal Phosphine Oxide Scaffold. Inorg. Chim. Acta 2016, 449, 96–106. DOI: 10.1016/j.ica.2016.05.003.
  • Grekov, L. I.; Vladimtseva, I. V.; Efremenko, V. I.; Chernov, A. B. New Technology for Covalent Immobilization of Biomolecules on Supports. I. Development of Methods for Obtaining Sorbents Based on Tris(Hydroxymethyl)Phosphine. Biotekhnologiya 2007, 34–40.
  • Reeves, W. A.; Guthrie, J. D. Intermediate for Flame-Resistant Polymers - Reactions of Tetrakis(Hydroxymethyl)Phosphonium Chloride. Ind. Eng. Chem. 1956, 48, 64–67. DOI: 10.1021/ie50553a021.
  • Beninate, J. V.; Boylston, E. K.; Drake, G. L.; Reeves, W. A. Application of a New Phosphonium Flame Retardant. Am. Dyest. Rep. 1968, 57, 74/P981-978/P985.
  • Kiselev, G. A.; Vol’f, L. A.; Meos, A. I. Non-Flammable Polyvinyl Alcohol Fibers Based on Reactions of PVA with Dimethylurea and Tetrakis(Hydroxymethyl)Phosphonium Chloride. Zh. Prikl. Khim. 1966, 39, 388–393.
  • LeBlanc, R. B.; Dicarlo, J. P.; LeBlanc, D. A. A New Phosphonium-Phosphoramide Condensation Product for Polyester/Cotton FR Finishing. Text. Chem. Color. 1978, 10, 75–77.
  • Pepperman, A. B.; Daigle, D. J.; Vail, S. L. Tris(Ureidomethyl)Phosphine Oxides. U.S. Patent 4,102,923, Jul 25, 1978.
  • Vail, S. L.; Daigle, D. J.; Frank, A. W. Chemistry of Hydroxymethyl Phosphorus Compounds: Part I. Introduction. Text. Res. J. 1982, 52, 671–677. DOI: 10.1177/004051758205201101.
  • Sivriev, C.; Żabski, L. Flame Retarded Rigid Polyurethane Foams by Chemical Modification with Phosphorus- and Nitrogen-Containing Polyols. Eur. Polym. J. 1994, 30, 509–514. DOI: 10.1016/0014-3057(94)90053-1.
  • Sivriev, H.; Kaleva, V.; Borissov, G. Synthesis of Polyurethanes from Phosphorus- and Nitrogen-Containing Diols Obtained on the Basis of Tetrakis(Hydroxymethyl)Phosphonium Chloride. Eur. Polym. J. 1986, 22, 761–765. DOI: 10.1016/0014-3057(86)90126-6.
  • Lamberink, J.-W.; Boyle, P. D.; Gilroy, J. B.; Noël, J. J.; Blacquiere, J. M.; Ragogna, P. J. Reactivity of Primary Phosphines and Primary Phosphine Sulfides towards Imines. Chem. Eur. J. 2022, 28, E202201565. DOI: 10.1002/chem.202201565.
  • Pepperman, A. B.; Siddall, T. H. Decomposition Reactions of Hydroxyalkylphosphorus Compounds. I. Reaction of Benzylbis(α-Hydroxybenzyl)Phosphine Oxide with Primary Amines. J. Org. Chem. 1975, 40, 1373–1377. DOI: 10.1021/jo00898a001.
  • Natchev, I. A. Synthesis, Enzyme—Substrate Interaction, and Herbicidal Activity of Phosphoryl Analogues of Glycine. Liebigs Ann. Chem. 1988, 1988, 861–867. DOI: 10.1002/jlac.198819880908.
  • Pepperman, A. B.; Siddall, T. H. Decomposition Reactions of Hydroxyalkylphosphorus Compounds. II. Reaction of Benzylbis(α-hydroxybenzy1)Phosphine Oxide with Benzaldehyde Imines. J. Org. Chem. 1975, 40, 2053–2056. DOI: 10.1021/jo00902a009.
  • Arbuzov, B. A.; Erastov, O. A.; Nikonov, G. N.; Arshinova, R. P.; Kadyrov, R. A. Synthesis and Steric Structure of N,N-Disubstituted 5-Phenyl-5-Oxo(Thio)-1,3,5-Diazaphosphorinanes. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 721–723.
  • Erastov, O. A.; Nikonov, G. N.; Arbuzov, B. A. Alkylation of Aminomethyl Derivatives of Primary Phosphines. Russ. Chem. Bull. 1983, 32, 1250–1254. DOI: 10.1007/BF00953167.
  • Goodwin, N. J.; Henderson, W.; Nicholson, B. K.; Sarfo, J. K.; Fawcett, J.; Russell, D. R. Synthesis and Reactivity of the Ferrocene-Derived Phosphine [Fe(η-C5H5){η-C5H4CH2P(CH2OH)2}]. J. Chem. Soc., Dalton Trans. 1997, 4377–4384. DOI: 10.1039/a703666c.
  • Kuznetsov, R. M.; Balueva, A. S.; Serova, T. M.; Nikonov, G. N. Synthesis of Aminomethylphosphines with Triazaadamantane Fragments. Russ. J. Gen. Chem. 2001, 71, 899–902. DOI: 10.1023/A:1012327301121.
  • Baimukhametov, F. Z.; Zheltukhin, V. F.; Nikonov, G. N.; Balueva, A. S. Synthesis of New Phosphines and P-Heterocycles from Phosphonates Containing Allyl Group. Russ. J. Gen. Chem. 2002, 72, 1754–1759. DOI: 10.1023/A:1023345313956.
  • Sun, J.; Wang, C.; Tan, Z.-W.; Liu, C.-M. A Novel Reactive Phosphonium-Containing Polyelectrolyte with Multiple Reactivities: Monomer Synthesis, RAFT Polymerization and Post-Polymerization Modifications. Polym. Chem. 2020, 11, 4029–4039. DOI: 10.1039/D0PY00362J.
  • Trigulova, K. R.; Shamsieva, A. V.; Kasimov, A. I.; Litvinov, I. A.; Amerhanova, S. K.; Voloshina, A. D.; Musina, E. I.; Karasik, A. A. Copper(II) and Manganese(II) Complexes Based on a New N,O-Chelating Ligand Bearing the 1,3,5-Diazaphosphorinane Moiety. Russ. Chem. Bull. 2022, 71, 1410–1421. DOI: 10.1007/s11172-022-3547-6.
  • Shaikh, T. M.; Weng, C.-M.; Hong, F.-E. Secondary Phosphine Oxides: Versatile Ligands in Transition Metal-Catalyzed Cross-Coupling Reactions. Coord. Chem. Rev. 2012, 256, 771–803. DOI: 10.1016/j.ccr.2011.11.007.
  • Leeuwen, P. W. N. M.; Cano, I.; Freixa, Z. Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis. ChemCatChem 2020, 12, 3982–3994. DOI: 10.1002/cctc.202000493.
  • Gallen, A.; Riera, A.; Verdaguer, X.; Grabulosa, A. Coordination Chemistry and Catalysis with Secondary Phosphine Oxides. Catal. Sci. Technol. 2019, 9, 5504–5561. DOI: 10.1039/C9CY01501A.
  • Wang, Z.-Y.; Guo, Q.; Wang, K.-K.; Xu, S. H-Phosphinates, H-Phosphonates and Secondary Phosphine Oxides in Radical Reactions and Strategy Analysis. Tetrahedron Lett. 2021, 81, 153352. DOI: 10.1016/j.tetlet.2021.153352.
  • Jablonkai, E.; Keglevich, G. P-C Bond Formation by Coupling Reactions Utilizing > P(O)H Species as the Reagents. Curr. Org. Synth. 2014, 11, 429–453. DOI: 10.2174/15701794113109990066.
  • Hoge, B.; Neufeind, S.; Hettel, S.; Wiebe, W.; Thösen, C. Stable Phosphinous Acids. J. Organomet. Chem. 2005, 690, 2382–2387. DOI: 10.1016/j.jorganchem.2004.09.041.
  • Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.; Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. On the Tautomerism of Secondary Phosphane Oxides. Eur. J. Org. Chem. 2010, 2010, 2733–2741. DOI: 10.1002/ejoc.201000037.
  • Kurscheid, B.; Wiebe, W.; Neumann, B.; Stammler, H.-G.; Hoge, B. Investigations of the Tautomeric Equilibria between Phosphane Oxides and Their Corresponding Phosphinous Acids Bearing Electron-Withdrawing Perfluoroaryl Groups. Eur. J. Inorg. Chem. 2011, 2011, 5523–5529. DOI: 10.1002/ejic.201100984.
  • Allefeld, N.; Grasse, M.; Ignat’ev, N.; Hoge, B. Synthesis of Unsymmetrically Substituted Phosphane Oxides (R1R2P(O)H) and Phosphinous Acids (R1R2POH). Chemistry 2014, 20, 8615–8620. DOI: 10.1002/chem.201402425.
  • Janesko, B. G.; Fisher, H. C.; Bridle, M. J.; Montchamp, J.-L. P(=O)H to P–OH Tautomerism: A Theoretical and Experimental Study. J. Org. Chem. 2015, 80, 10025–10032. DOI: 10.1021/acs.joc.5b01618.
  • Vincze, D.; Ábrányi-Balogh, P.; Bagi, P.; Keglevich, G. A Mechanistic Study on the Tautomerism of H-Phosphonates, H-Phosphinates and Secondary Phosphine Oxides. Molecules 2019, 24, 3859. DOI: 10.3390/molecules24213859.
  • Moiseev, D. V.; James, B. R.; Hu, T. Q. Characterization of Secondary and Primary (Hydroxymethyl)Phosphines and Their Oxidation Products: Synergism in Pulp-Bleaching. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 433–447. DOI: 10.1080/10426507.2011.632388.
  • Hoge, B.; Bader, J.; Beckers, H.; Kim, Y. S.; Eujen, R.; Willner, H.; Ignatiev, N. The Bis(Pentafluoroethyl)Phosphinous Acid (C2F5)2POH. Chemistry 2009, 15, 3567–3576. DOI: 10.1002/chem.200801837.
  • Stankevič, M.; Andrijewski, G.; Pietrusiewicz, K. M. Direct Conversion of sec-Phosphine Oxides into Phosphinous Acid-Boranes. Synlett 2004, 0311–0315. DOI: 10.1055/s-2004-815411.
  • Stankevič, M.; Pietrusiewicz, K. M. The Synthesis and Reactivity of Phosphinous Acid-Boranes. Synthesis 2005, 1279–1290. DOI: 10.1055/s-2005-861878.
  • Walther, B. The Coordination Chemistry of Secondary Phosphine Chalcogenides and Their Conjugate Bases. Coord. Chem. Rev. 1984, 60, 67–105. DOI: 10.1016/0010-8545(84)85062-6.
  • Issleib, K.; Walther, B.; Fluck, E. Untersuchungen der Kernmagnetischen Resonanz von Phosphorverbindungen; 31P-Kernresonanzspektren der Alkali-Phosphinite R2POM. Z. Chem. 2010, 8, 67–67. DOI: 10.1002/zfch.19680080215.
  • Grim, S. O.; Satek, L. C. Synthesis and Magnetic Resonance Studies of Some Phosphinous Acids, Phosphorylacetic Acids, and Some of Their Coordination Compounds. J. Inorg. Nucl. Chem. 1977, 39, 499–511. DOI: 10.1016/0022-1902(77)80070-5.
  • Kendall, A. J.; Seidenkranz, D. T.; Tyler, D. R. Improved Synthetic Route to Heteroleptic Alkylphosphine Oxides. Organometallics 2017, 36, 2412–2417. DOI: 10.1021/acs.organomet.7b00304.
  • Härling, S. M.; Krieck, S.; Görls, H.; Westerhausen, M. Influence of 18-Crown-6 Ether Coordination on the Catalytic Activity of Potassium and Calcium Diarylphosphinites in Hydrophosphorylation Reactions. Inorg. Chem. 2017, 56, 9255–9263. DOI: 10.1021/acs.inorgchem.7b01314.
  • Issleib, K.; Walther, B. Synthesis of Silyl Phosphinites. Angew. Chem. Int. Ed. Engl. 1967, 6, 88–89. DOI: 10.1002/anie.196700881.
  • Issleib, K.; Walther, B. Phosphinigsäure-Silyl-, -Germanyl-, -Stannylester Des Typs (R2P-O-)nER′4−n. J. Organomet. Chem. 1970, 22, 375–386. DOI: 10.1016/S0022-328X(00)86056-8.
  • Volkholz, M.; Stelzer, O.; Schmutzler, R. Darstellung und Reaktionen des Dimethylphosphinigsäure-Trimethylsilylesters, Me2P-OSiMe3. Chem. Ber. 1978, 111, 890–900. DOI: 10.1002/cber.19781110309.
  • Kabachnik, M. I.; Medved’, T. Y.; Dyatlova, N. M.; Arkhipova, O. G.; Rudomino, M. V. Organophosphorus Complexones. Russ. Chem. Rev. 1968, 37, 503–518. DOI: 10.1070/RC1968v037n07ABEH001662.
  • Petrov, K. A.; Chauzov, V. A.; Erokhina, T. S. Aminoalkyl Organophosphorus Compounds. Russ. Chem. Rev. 1974, 43, 984–1006. DOI: 10.1070/RC1974v043n11ABEH001877.
  • Pudovik, A. N.; Konovalova, I. V. Addition Reactions of Esters of Phosphorus(III) Acids with Unsaturated Systems. Synthesis 1979, 1979, 81–96. DOI: 10.1055/s-1979-28566.
  • Zimin, M. G.; Cherkasov, R. A.; Pudovik, A. N. New Data on Addition Reactions of Hydrophosphoryl Compounds on Multiple Bonds. Zh. Obshch. Khim. 1986, 56, 977–991.
  • Heaney, F. Functions Containing a Nitrogen and Another Group 15 Element. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, 1995; Vol. 4, pp. 451–504. DOI: 10.1016/B0-08-044705-8/00255-7.
  • Cherkasov, R. A.; Galkin, V. I. The Kabachnik–Fields Reaction: Synthetic Potential and the Problem of the Mechanism. Russ. Chem. Rev. 1998, 67, 857–882. DOI: 10.1070/RC1998v067n10ABEH000421.
  • Wicht, D. K.; Glueck, D. S. Hydrophosphination and Related Reactions. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001, pp. 143–170. DOI: 10.1002/3527600159.ch5.
  • Alajarín, M.; López-Leonardo, C.; Llamas-Lorente, P. The Chemistry of Phosphinous Amides (Aminophosphanes): Old Reagents with New Applications. In New Aspects in Phosphorus Chemistry V; Majoral, J. P., Ed.; Springer: Berlin, Heidelberg, 2005, pp. 77–106. DOI: 10.1007/b100982.
  • Kudzin, M. H.; Kudzin, Z. H.; Drabowicz, J. Thioureidoalkylphosphonates in the Synthesis of 1-Aminoalkylphosphonic Acids. The Ptc-Aminophosphonate Method. Arkivoc 2011, 2011, 227–269. DOI: 10.3998/ark.5550190.0012.617.
  • Keglevich, G.; Bálint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. DOI: 10.3390/molecules171112821.
  • Zhao, D.; Wang, R. Recent Developments in Metal Catalyzed Asymmetric Addition of Phosphorus Nucleophiles. Chem. Soc. Rev. 2012, 41, 2095–2108. DOI: 10.1039/C1CS15247E.
  • Keglevich, G.; Grün, A.; Bálint, E.; Kiss, N. Z.; Jablonkai, E. Microwave-Assisted Organophosphorus Synthesis. COC 2013, 17, 545–554. DOI: 10.2174/1385272811317050009.
  • Zhang, Z.; Kaplan, M. J.; Antilla, J. C. Addition of Heteroatom Nucleophiles to C = O and C = N pi Bonds. In Additions to C-X π-Bonds, Part 1, 2nd ed.; Knochel, P., Ed.; Elsevier: Amsterdam, 2014; Vol. 1, pp. 653–696. DOI: 10.1016/B978-0-08-097742-3.00123-3.
  • Mazurkiewicz, R.; Październiok-Holewa, A.; Adamek, J.; Zielińska, K. α-Amidoalkylating Agents: Structure, Synthesis, Reactivity and Application. Adv. Heterocycl. Chem. 2014, 111, 43–94. DOI: 10.1016/B978-0-12-420160-6.00002-1.
  • Morgalyuk, V. P. Chemistry of Phosphorylated Formaldehyde Derivatives. Part I. Molecules 2014, 19, 12949–13009. DOI: 10.3390/molecules190912949.
  • Goud, E. V.; Sivaramakrishna, A.; Vijayakrishna, K. Aminophosphine Oxides: A Platform for Diversified Functions. Top. Curr. Chem. (Cham.) 2017, 375, 10. 10. DOI: 10.1007/s41061-016-0090-7.
  • Keglevich, G.; Kiss, N. Z.; Grün, A.; Bálint, E.; Kovács, T. Advantages of the Microwave Tool in Organophosphorus Syntheses. Synthesis 2017, 49, 3069–3083. DOI: 10.1055/s-0036-1589031.
  • Bálint, E.; Tripolszky, A.; Tajti, Á. Synthesis of α-Aminophosphonates by the Kabachnik–Fields Reaction and by the Pudovik Reaction. In Organophosphorus Chemistry: Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, 2018, pp. 108–147. DOI: 10.1515/9783110535839-006.
  • Gazizov, A. S.; Smolobochkin, A. V.; Turmanov, R. A.; Pudovik, M. A.; Burilov, A. R.; Sinyashin, O. G. Synthesis of Phosphaproline Derivatives: A Short Overview. Synthesis 2019, 51, 3397–3409. DOI: 10.1055/s-0037-1611891.
  • Chen, L.; Liu, X.-Y.; Zou, Y.-X. Recent Advances in the Construction of Phosphorus-Substituted Heterocycles, 2009–2019. Adv. Synth. Catal. 2020, 362, 1724–1818. DOI: 10.1002/adsc.201901540.
  • Shilpa, T.; Harry, N. A.; Ujwaldev, S. M.; Anilkumar, G. An Overview of Microwave-Assisted Kabachnik-Fields Reactions. ChemistrySelect 2020, 5, 4422–4436. DOI: 10.1002/slct.202000693.
  • Varga, P. R.; Keglevich, G. Synthesis of α-Aminophosphonates and Related Derivatives; the Last Decade of the Kabachnik-Fields Reaction. Molecules 2021, 26, 2511. DOI: 10.3390/molecules26092511.
  • Huang, Y.; Chen, Q. Recent Advances in C(sp3)-H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters. Chinese J. Org. Chem. 2021, 41, 4138–4153. DOI: 10.6023/cjoc202107044.
  • Ung, S. P.-M.; Mechrouk, V. A.; Li, C.-J. Shining Light on the Light-Bearing Element: A Brief Review of Photomediated C–H Phosphorylation Reactions. Synthesis 2021, 53, 1003–1022. DOI: 10.1055/s-0040-1705978.
  • Gbubele, J. D.; Olszewski, T. K. Asymmetric Synthesis of Organophosphorus Compounds Using H-P Reagents Derived from Chiral Alcohols. Org. Biomol. Chem. 2021, 19, 2823–2846. DOI: 10.1039/D1OB00124H.
  • Luo, Z.; Ding, J.; Huang, D.; Wu, X.; Bi, Y. Recent Advances in Three-Component Reactions of P(O)-H Compounds. Tetrahedron Lett. 2022, 96, 153757. DOI: 10.1016/j.tetlet.2022.153757.
  • Egorov, IN.; Santra, S.; Zyryanov, G. V.; Majee, A.; Hajra, A.; Chupakhin, O. N. Direct Asymmetric Addition of Heteroatom Nucleophiles to Imines. Adv. Synth. Catal. 2022, 364, 2092–2112. DOI: 10.1002/adsc.202200155.
  • Semenzin, D.; Etemad-Moghadam, G.; Albouy, D.; Diallo, O.; Koenig, M. Dual Radical/Polar Pudovik Reaction: Application Field of New Activation Methods. J. Org. Chem. 1997, 62, 2414–2422. DOI: 10.1021/jo9622441.
  • Gröger, H.; Martens, J.; Goerlich, J. R.; Schmutzler, R. A Novel Synthetic Approach to α-Aminophosphine Sulfide Structures: The First Addition of Dimethylphosphine Sulfide to 3-Thiazolines. Phosphorus Sulfur Silicon Relat. Elem. 1997, 128, 153–163. DOI: 10.1080/10426509708031571.
  • Andrieu, J.; Dietz, J.; Poli, R.; Richard, P. Reversible P–C Bond Formation for Saturated α-Aminophosphine Ligands in Solution: Stabilization by Coordination to Cu(I). New J. Chem. 1999, 23, 581–583. DOI: 10.1039/a902783a.
  • Andrieu, J.; Baldoli, C.; Maiorana, S.; Poli, R.; Richard, P. Chiral α‐P,N Ligands from a Diastereoselective Ph2PH Addition to (η6‐Benzaldimine)Tricarbonylchromium Complexes. Eur. J. Org. Chem. 1999, 1999, 3095–3097. DOI: 10.1002/(SICI)1099-0690(199911)1999:11 < 3095::AID-EJOC3095 > 3.0.CO;2-Q.
  • Andrieu, J.; Camus, J.-M.; Poli, R.; Richard, P. New Chiral α-Aminophosphine Oxides and Sulfides: An Unprecedented Rhodium-Catalyzed Ligand Epimerization. New J. Chem. 2001, 25, 1015–1023. DOI: 10.1039/b100217l.
  • Musina, E. I.; Wittmann, T. I.; Strelnik, I. D.; Naumova, O. E.; Karasik, A. A.; Krivolapov, D. B.; Islamov, D. R.; Kataeva, O. N.; Sinyashin, O. G.; Lönnecke, P.; Hey-Hawkins, E. Influence of the Rac–Meso Isomerization of Seven-Membered Cyclic Bisphosphines on the Predominant Formation of Chelate Complexes. Polyhedron 2015, 100, 344–350. DOI: 10.1016/j.poly.2015.08.033.
  • Streuli, C. A. Determination of Basicity of Substituted Phosphines by Nonaqueous Titrimetry. Anal. Chem. 1960, 32, 985–987. DOI: 10.1021/ac60164a027.
  • Kabachnik, M. I.; Balueva, G. A. The Basicity of Phosphines and the Hammett Equation. Russ. Chem. Bull. 1962, 11, 495–496. DOI: 10.1007/BF00909558.
  • Henderson, W. A.; Streuli, C. A. The Basicity of Phosphines. J. Am. Chem. Soc. 1960, 82, 5791–5794. DOI: 10.1021/ja01507a008.
  • Allman, T.; Goel, R. G. The Basicity of Phosphines. Can. J. Chem. 1982, 60, 716–722. DOI: 10.1139/v82-106.
  • Streitwieser, A.; McKeown, A. E.; Hasanayn, F.; Davis, N. R. Basicity of Some Phosphines in THF. Org. Lett. 2005, 7, 1259–1262. DOI: 10.1021/ol047315u.
  • Haake, P.; Cook, R. D.; Hurst, G. H. Evaluation of the Basicity of Phosphine Oxides and Phosphine Sulfides by Measurements of Chemical Shift in Sulfuric Acid Solutions. J. Am. Chem. Soc. 1967, 89, 2650–2654. DOI: 10.1021/ja00987a026.
  • Cook, A. G.; Mason, G. W. Basicities of (X)(Y)PO(CH3) with Variation of X and Y Substituents. J. Inorg. Nucl. Chem. 1973, 35, 2090–2093. DOI: 10.1016/0022-1902(73)80155-1.
  • Skvortsov, N. K.; Dogadina, A. V.; Tereshchenko, G. F.; Morkovin, N. V.; Ionin, B. I.; Petrov, A. A. Study of Protonization of Phosphine Oxides by 1H and 31P Nuclear Magnetic Resonance. Zh. Obshch. Khim. 1971, 41, 2807–2808.
  • Sobanov, A. A.; Bakhtiyarova, I. V.; Badeeva, E. K.; Zimin, M. G.; Pudovik, A. N. Interaction of Phosphorus Acid Partial Esters with α,β-Unsaturated Imines. Zh. Obshch. Khim. 1985, 55, 27–32.
  • Van Es, J. J. G. S.; Jaarsveld, K.; van der Gen, A. Diphenylphosphinoyl-Substituted Ylides. 1. Thermal 1,3-Dipolar Cycloaddition of α-(Diphenylphosphinoyl)Glycine Ester Imines. Dipole Formation as the Rate-Determining Step. J. Org. Chem. 1990, 55, 4063–4069. DOI: 10.1021/jo00300a022.
  • Rohovec, J.; Vojtíšek, P.; Lukeš, I. Reaction of Compounds with a H-P Bond with Schiff-Bases. Phosphorus Sulfur Silicon Relat. Elem. 1999, 148, 79–95. DOI: 10.1080/10426509908037002.
  • Palacios, F.; Aparicio, D.; de los Santos, J. M.; Ignacio, R.; López, Y. An Efficient Synthesis of Functionalized α-Amino-Phosphine Oxides and -Phosphonates by Addition of Aminoalcohols to 4-Phosphorylated-1,2-Diaza-1,3-Butadienes. Arkivoc 2005, 2005, 153–161. DOI: 10.3998/ark.5550190.0006.612.
  • Popovics-Tóth, N. Synthesis of Heterocycles Containing Phosphonate or Phosphine Oxide Moiety by Multicomponent Reactions. PhD Dissertation, Budapest University of Technology and Economics, Budapest, Hungary, 2021.
  • Trofimov, B. A.; Volkov, P. A.; Khrapova, K. O.; Telezhkin, A. A.; Ivanova, N. I.; Albanov, A. I.; Gusarova, N. K.; Belogolova, A. M.; Trofimov, A. B. Acetylene-Triggered Reductive Incorporation of Phosphine Chalcogenides into a Quinoline Scaffold: Toward SNHAr Reaction. J. Org. Chem. 2019, 84, 6244–6257. DOI: 10.1021/acs.joc.9b00519.
  • Volkov, P. A.; Telezhkin, A. A.; Khrapova, K. O.; Ivanova, N. I.; Albanov, A. I.; Gusarova, N. K.; Trofimov, B. A. Metal-Free SNH Cross-Coupling of Pyridines with Phosphine Chalcogenides: Polarization/Deprotonation/Oxidation Effects of Electron-Deficient Acetylenes. New J. Chem. 2021, 45, 6206–6219. DOI: 10.1039/D1NJ00245G.
  • Das, D.; Seidel, D. Redox-Neutral α-C–H Bond Functionalization of Secondary Amines with Concurrent C–P Bond Formation/N-Alkylation. Org. Lett. 2013, 15, 4358–4361. DOI: 10.1021/ol401858k.
  • Guo, Y.; Gao, Z.; Duan, Y.; Xiao, J. PREPRINT (Version 1). Available at Research Square. 2022. DOI: 10.21203/rs.3.rs-2116625/v1.
  • Trofimov, B. A.; Volkov, P. A.; Telezhkin, A. A.; Khrapova, K. O.; Ivanova, N. I.; Albanov, A. I.; Gusarova, N. K. Catalyst-Free Double CH-Functionalization of Quinolines with Phosphine Oxides via Two SNHAr Reaction Sequences. J. Org. Chem. 2020, 85, 4927–4936. DOI: 10.1021/acs.joc.0c00084.
  • Bertz, S. H.; Dabbagh, G. Addition of Diphenylphosphine Oxide to Arenesulfonylhydrazones: Novel Adducts from Tosylhydrazones and a New Synthesis of Alkyldiphenylphosphine Oxides from Trisylhydrazones. J. Am. Chem. Soc. 1981, 103, 5932–5934. DOI: 10.1021/ja00409a063.
  • Broekhof, N. L. J. M.; van der Gen, A. Novel Applications of α-Aminosubstituted Diphenylphosphine Oxides. The Conversion of Aldehydes into α-Aminomethylketones. Tetrahedron Lett. 1981, 22, 2799–2802. DOI: 10.1016/S0040-4039(01)90556-8.
  • van der Gen, A.; Broekhof, N. L. J. M. Synthetic Applications of α-Amino Substituted Phosphine Oxides. In Phosphorus Chemistry; Quin, L. D., Verkade, J. G., Eds.; American Chemical Society: Washington, DC, 1981, pp. 47–50 DOI: 10.1021/bk-1981-0171.ch009.
  • van der Gen, A.; Zorgdrager, J.; van der Steeg, M.; Schreurs, H. Synthesis of Mitosenes from N-Aryl-2-(Diphenylphosphinyl)Pyrrolidines. Recl. Trav. Chim. Pays-Bas. 2010, 111, 402–406. DOI: 10.1002/recl.19921110904.
  • Goldeman, W.; Olszewski, T. K.; Boduszek, B.; Sawka-Dobrowolska, W. Aminophosphine Oxides in a Pyridine Series. Studies on the Cleavage of Pyridine-2- and Pyridine-4-yl-(N-Benzylamino)-Methyldiphenylphosphine Oxides in Acidic Solutions. Tetrahedron 2006, 62, 4506–4518. DOI: 10.1016/j.tet.2006.02.048.
  • Iwanejko, J.; Brol, A.; Szyja, B.; Daszkiewicz, M.; Wojaczyńska, E.; Olszewski, T. K. Hydrophosphonylation of ChiralHexahydroquinoxalin-2(1H)-One Derivatives as an Effective Route to New Bicyclic Compounds: Aminophosphonates, Enamines and Imines. Tetrahedron 2019, 75, 1431–1439. DOI: 10.1016/j.tet.2019.01.062.
  • Morgalyuk, V. P.; Strelkova, T. V.; Nifant’ev, E. E. Synthesis of Polyfunctionalized Methylphosphine Oxides. Russ. Chem. Bull. 2012, 61, 380–385. DOI: 10.1007/s11172-012-0053-2.
  • Morgalyuk, V. P.; Strelkova, T. V.; Nifant’ev, E. E. Reactions of N,N-Dimethylamino(Diphenylphosphoryl)Chloromethane with Alkan-2-Ones. Russ. Chem. Bull. 2012, 61, 1833–1835. DOI: 10.1007/s11172-012-0255-7.
  • Morgalyuk, V. P.; Strelkova, T. V.; Nifant’ev, E. E. Ambident Reactivity of Chloro(Dialkylamino)-(Diphenylphosphinoyl)Methanes. Bull. Chem. Soc. Jpn. 2012, 85, 93–100. DOI: 10.1246/bcsj.20110157.
  • Moiseev, D. V.; Marcazzan, P.; James, B. R. Reversible Decomposition of Mono(α-Hydroxy)Phosphines and Their Reaction with α,β-Unsaturated Aldehydes. Can. J. Chem. 2009, 87, 582–590. DOI: 10.1139/V09-021.
  • Moiseev, D. V.; Patrick, B. O.; James, B. R. New Tertiary Phosphines from Cinnamaldehydes and Diphenylphosphine. Inorg. Chem. 2007, 46, 11467–11474. DOI: 10.1021/ic701597g.
  • Moiseev, D. V. Interaction of Aldehydes and α,β-Unsaturated Carbonyl Compounds, Containing a Phenylpropanoid Backbone, with Tertiary and Secondary Phosphines. Habilitation Dissertation, Nizhniy Novgorod State University, Nizhniy Novgorod, Russia, 2017.
  • Evangelidou-Tsolis, E.; Ramirez, F.; Pilot, J. F.; Smith, C. P. Reactions of Secondary and Tertiary Phosphines with Monocarbonyl Compounds. Phosphorus 1974, 5, no–no. DOI: 10.1002/chin.197448406.
  • Peulecke, N.; Kindermann, M. K.; Köckerling, M.; Heinicke, J. Phosphonium Bis(Glycolates) and Phosphinoglycolates: Synthesis, Solvolysis, Oxidation to (Thio)Phosphinoylglycolates and Use as Ligands in Ni-Catalyzed Ethylene Oligomerization. Polyhedron 2012, 41, 61–69. DOI: 10.1016/j.poly.2012.04.019.
  • Miller, R. C.; Miller, C. D.; Rogers, W.; Hamilton, L. A. Disubstituted Phosphine Oxides. IV. Addition Reactions with Aldehydes and Ketones. J. Am. Chem. Soc. 1957, 79, 424–427. DOI: 10.1021/ja01559a052.
  • Gusarova, N. K.; Ivanova, N. I.; Volkov, P. A.; Khrapova, K. O.; Larina, L. I.; Smirnov, V. I.; Borodina, T. N.; Trofimov, B. A. Catalyst- and Solvent-Free Rapid Addition of Secondary Phosphine Chalcogenides to Aldehydes: Another Click Chemistry. Synthesis 2015, 47, 1611–1622. DOI: 10.1055/s-0034-1380408.
  • Gusarova, N. K.; Ivanova, N. I.; Khrapova, K. O.; Volkov, P. A.; Telezhkin, A. A.; Larina, L. I.; Afonin, A. V.; Pavlov, D. V.; Trofimov, B. A. Catalyst- and Solvent-Free Hydrophosphorylation of Ketones with Secondary Phosphine Oxides: Green Synthesis of Tertiary α-Hydroxyphosphine Oxides. Synthesis 2020, 52, 2224–2232. DOI: 10.1055/s-0040-1707945.
  • Khrapova, K. O. New Aspects of the Chemistry of Secondary Phosphine Chalcogenides. PhD Dissertation, A. E. Favorsky Irkutsk Institute of Chemistry, Irkutsk, Russian Federation, 2016.
  • Petrov, K. A.; Parshina, V. A. Reactions of Phosphines. III. Reactions of Secondary Phosphines with Aldehydes and Ketones. Zh. Obshch. Khim. 1961, 31, 3417–3420.
  • Kreutzkamp, N.; Herberg, K.; Lämmerhirt, K.; Schmidt-Samoa, E. Neue Synthesen Tertiärer Aminomethyl-Phosphinoxide. Arch. Pharm. Ber. Dtsch Pharm. Ges. 1971, 304, 896–899. DOI: 10.1002/ardp.19713041205.
  • Petrov, K. A.; Chauzov, V. A.; Erokhina, T. S. Interactions in Dibenzylphosphine Oxide-Formaldehyde-Aniline System; Replacement of the Hydroxy Group of (Hydroxymethyl)Phosphonic Acid with Amino Group. Khim. Elementoorg. Soedin. 1976, 200–204.
  • Turanov, A. N.; Kharitonov, A. V.; Yarkevich, A. N.; Safronova, Z. V.; Tsvetkov, E. N. Synthesis of Phosphoryalated Aza-Crown Ethers and Their Extraction Ability with Respect to Palladium. Zh. Obshch. Khim. 1999, 69, 1097–1101.
  • Tsebrikova, G. S.; Polyakova, IN.; Solov’ev, V. P.; Ivanova, I. S.; Kalashnikova, I. P.; Kodina, G. E.; Baulin, V. E.; Tsivadze, A. Y. Complexation of the New Tetrakis[Methyl(Diphenylphosphorylated)]Cyclen Derivative with Transition Metals: First Examples of Octacoordinate Zinc(II) and Cobalt(II) Complexes with Cyclen Molecules. Inorg. Chim. Acta 2018, 478, 250–259. DOI: 10.1016/j.ica.2018.04.007.
  • Rauhut, M. M.; Currier, H. A. Reactions of Bis(2-Cyanoethyl)Phosphine Oxide. J. Org. Chem. 1961, 26, 4628–4632. DOI: 10.1021/jo01069a103.
  • Galkina, I. V.; Galkin, V. I.; Cherkasov, R. A. Kinetics and Mechanism of the Kabachnik-Fields Reaction: V. Effect of the Nature of the Hydrophosphoryl Compound on the Mechanism of the Kabachnik-Fields Reaction. Zh. Obshch. Khim. 1998, 68, 1469–1475.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Talan, A. S.; Davletshin, R. R.; Kurnosova, N. V. Synthesis of New Liophilic Functionalized Aminomethylphosphine Oxides and Their Acid-Base and Membrane-Transport Properties toward Acidic Substrates. Russ. J. Gen. Chem. 2009, 79, 1835–1849. DOI: 10.1134/S1070363209090114.
  • Li, X.-A.; Li, J.-Y.; Yang, B.; Yang, S.-D. Catalyst-Free Three-Component Reaction to Synthesize Chiral α-Amino Phosphine Oxides. RSC Adv. 2014, 4, 39920–39923. DOI: 10.1039/C4RA05645K.
  • Koshkin, S. A.; Garifzyanov, A. R.; Davletshina, N. V.; Kataeva, O. N.; Islamov, D. R.; Cherkasov, R. A. Synthesis of New Lipophilic Phosphine Oxide Derivatives of Natural Amino Acids and Their Membrane Transport Properties toward Carboxylic Acids. Russ. J. Org. Chem. 2015, 51, 1232–1244. DOI: 10.1134/S1070428015090031.
  • Bálint, E.; Tripolszky, A.; Jablonkai, E.; Karaghiosoff, K.; Czugler, M.; Mucsi, Z.; Kollár, L.; Pongrácz, P.; Keglevich, G. Synthesis and Use of α-Aminophosphine Oxides and N,N-Bis(Phosphinoylmethyl)Amines – A Study on the Related Ring Platinum Complexes. J. Organomet. Chem. 2016, 801, 111–121. DOI: 10.1016/j.jorganchem.2015.10.029.
  • Bálint, E.; Tripolszky, A.; Ádám, A.; Tajti, Á.; Keglevich, G. Synthesis and Utilization of α-Aminophosphine Oxides and Related Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1539–1540. DOI: 10.1080/10426507.2016.1212860.
  • Zwillinger-Tripolszky, A. Aminofoszfin-Oxidok, Gyűrűs Aminofoszfonátok és Rokonvegyületeik Szintézise és Felhasználási Lehetőségei. PhD Dissertation, Budapest University of Technology and Economics, Budapest, Hungary, 2020.
  • Popovics-Tóth, N.; Bao, T. D. T.; Tajti, Á.; Mátravölgyi, B.; Kelemen, Z.; Perdih, F.; Hackler, L.; Puskás, L. G.; Bálint, E. Three-Component Reaction of 3-Formyl-6-Methylchromone, Primary Amines, and Secondary Phosphine Oxides: A Synthetic and Mechanistic Study. ACS Omega 2023, 8, 2698–2711. DOI: 10.1021/acsomega.2c07333.
  • Petrov, K. A.; Chauzov, V. A.; Erokhina, T. S. Investigation of Interaction of Dibenzylphosphine Oxide and Dibutyl Phosphite with Formaldehyde and Diethylamine. Zh. Obshch. Khim. 1975, 45, 737–744.
  • Kamata, H.; Li, H.; Kofune, H.; Takahashi, K.; Okabe, T. Manufacture of High-Purity Phosphorus-Based Fireproofing Agents. Jpn. Patent 2009-35597, Feb 19, 2009.
  • Ivanov, B. E.; Krokhina, S. S.; Chichkanova, T. V. Reaction of N-Chloromethyldiethylamine, N-Chloromethylbenzamide, and N-Chloromethylphthalimide with Esters of Trivalent Phosphorus Thioacids. Russ. Chem. Bull. 1985, 34, 168–171. DOI: 10.1007/BF01157347.
  • Pudovik, D. A.; Al’fonsov, A. V.; Batyeva, É. S.; Pudovik, A. N. Reactions of Acylthiophosphites and Acylthiophosphinites with Azomethines. Russ. Chem. Bull. 1988, 37, 381–383. DOI: 10.1007/BF00957451.
  • Nurtdinov, S. K.; Ryabkov, V. A.; Gabidullina, R. S.; Ismagilova, N. M.; Zykova, T. V.; Sultanova, R. B.; Tsivunin, V. S. Reaction of Phosphorus(III) Acid Chlorides with Azomethines. Zh. Obshch. Khim. 1981, 51, 1545–1549.
  • Miller, J. A.; Stewart, D. Reaction of Chlorodiphenylphosphine with Acetic Acid. Tetrahedron Lett. 1977, 18, 1065–1068. DOI: 10.1016/S0040-4039(01)92830-8.
  • Gazizov, ΜB.; Khairullin, R. A.; Moskva, V. V. Reactions of Phosphorus(III) Chlorides with Carbonyl Compounds. Russ. Chem. Rev. 1990, 59, 251–267. DOI: 10.1070/RC1990v059n03ABEH003523.
  • Oleksyszyn, J. Synthesis of N-Acylated 1-Aminoalkyl-Diphenylphosphine Oxides by Amidoalkylation of Diphenylchlorophosphine. Synthesis 1981, 1981, 444–445. DOI: 10.1055/s-1981-29475.
  • Rassukana, Y. V.; Sinitsa, A. A.; Onys’ko, P. P. O,O-Diphenyl N-Sulfonylbenzimidoylphosphonates, a Novel Type of C-Phosphorylated Imines. Russ. Chem. Bull. 2005, 54, 2652–2655. DOI: 10.1007/s11172-006-0171-9.
  • Suvalova, E. A.; Chudakova, T. I.; Onys’ko, P. P.; Sinitsa, A. D. Formation of α-Acylaminopolyfluoroalkylphosphoryl Derivatives by Phosphite-Phosphonate and Phosphonite-Phosphine Oxide Rearrangements. Zh. Obshch. Khim. 1995, 65, 1223–1224.
  • Onys’ko, P. P. Amidoalkylation of Trivaient Phosphorus Acid Chlorides with N-(α-Hydroxytrichloroethyl)Amides. Zh. Obshch. Khim. 1997, 67, 1216–1217.
  • Onys’ko, P. P. Synthesis of α-(Acylamino)Polyhaloalkylphosphoryl Compounds by the Reaction of Trivalent Phosphorus Chlorides with N-(α-Hydroxypolyhaloalkyl)Amides. Russ. Chem. Bull. 1998, 47, 1763–1767. DOI: 10.1007/BF02495701.
  • Suvalova, E. A.; Chudakova, T. I.; Onys’ko, P.; Sinitsa, A. D. α-Phosphorylated Polyfluoroalkenylamides. Zh. Obshch. Khim. 1999, 69, 1299–1302.
  • de Medina, P.; Ingrassia, L. S.; Mulliez, M. E. Synthesis of the First Stable Phosphonamide Transition State Analogue. J. Org. Chem. 2003, 68, 8424–8430. DOI: 10.1021/jo034229j.
  • Pavlovskii, V. I.; Gololobov, Y. G.; Andronati, S. A.; Voronenko, E. V.; Kabanova, T. A.; Khalimova, E. I.; Krasnova, I. Y.; Khrustalev, V. N. Synthesis, Structure, and Analgesic Properties of Phosphorylated Dihydro-1,4-Benzodiazepin-2-Ones. Pharm. Chem. J. 2016, 50, 229–233. DOI: 10.1007/s11094-016-1428-8.
  • Gololobov, Y. G.; Krasnova, I. Y.; Barabanov, S. V.; Makarov, M. V.; Khrustalev, V. N.; Andronati, S. A.; Pavlovskii, V. I. 1,5-Thione-Thiol Isomerization of 3-O-Phosphorylated 1,4-Benzodiazepine. Russ. J. Gen. Chem. 2014, 84, 1748–1753. DOI: 10.1134/S1070363214090187.
  • Brunner, H.; Weber, H. Asymmetrische Katalysen, 23. Optisch Aktive Aminophosphane – Synthese und Verwendung in der Rh-Katalysierten Enantioselektiven Hydrosilylierung. Chem. Ber. 1985, 118, 3380–3395. DOI: 10.1002/cber.19851180835.
  • Brunner, H.; Grötzinger, L.; Weber, H. Products from the Reaction of Pyrrolimines and Chlordiphenylphosphine. Inorg. Chim. Acta 1985, 103, 19–21. DOI: 10.1016/s0020-1693(00)85205-6.
  • Hudson, R. F.; Searle, R. J. G.; Devitt, F. H. Reactions of Tervalent Phosphorus–Nitrogen Compounds. Part II. Aldehydes and Ketones. J. Chem. Soc. B 1966, 789–792. DOI: 10.1039/J29660000789.
  • Pudovik, A. N.; Batyeva, É. S. Reactions of Aminophosphines with α,β-Unsaturated Aldehydes. Russ. Chem. Bull. 1968, 17, 2265–2266. DOI: 10.1007/BF00904067.
  • Priya, S.; Balakrishna, M. S.; Mague, J. T. First Examples of Methylene Insertion into the Phosphorus(III)–Nitrogen Bond. Inorg. Chem. Commun. 2001, 4, 437–440. DOI: 10.1016/S1387-7003(01)00222-2.
  • Priya, S.; Balakrishna, M. S.; Mague, J. T.; Mobin, S. M. Insertion of Carbon Fragments into P(III)−N Bonds in Aminophosphines and Aminobis(Phosphines): Synthesis, Reactivity, and Coordination Chemistry of Resulting Phosphine Oxide Derivatives. Crystal and Molecular Structures of (Ph2P(O)CH2)2NR (R = Me, nPr, nBu), Ph2P(O)CH(OH)nPr, and Cis-[MoO2Cl2{(Ph2P(O)CH2)2NEt-κO,κO}]. Inorg. Chem. 2003, 42, 1272–1281. DOI: 10.1021/ic026118t.
  • Priya, S.; Balakrishna, M. S.; Mobin, S. M. Reactions of Aminophosphines and Aminobis(Phosphines) with Aldehydes and Ketones: Coordination Complexes of the Resultant Aminobis(Alkylphosphineoxides) with Cobalt, Uranium, Thorium and Gadolinium Salts: Crystal and Molecular Structures of Ph2P(O)CH(C6H4OH-o)N(H)Ph, Ph2P(O)CH(OH)C6H4OH-o and Ph2P(O)N(H)Ph. Polyhedron 2005, 24, 1641–1650. DOI: 10.1016/j.poly.2005.04.036.
  • Nifantiev, E. E.; Grachev, M. K.; Burmistrov, S. Y. Amides of Trivalent Phosphorus Acids as Phosphorylating Reagents for Proton-Donating Nucleophiles. Chem. Rev. 2000, 100, 3755–3800. DOI: 10.1021/cr9601371.
  • Kolodiazhnyi, O. I.; Gryshkun, E. V.; Andrushko, N. V.; Freytag, M.; Jones, P. G.; Schmutzler, R. Asymmetric Synthesis of Chiral N-(1-Methylbenzyl)Aminophosphines. Tetrahedron Asymmetry 2003, 14, 181–183. DOI: 10.1016/S0957-4166(02)00750-4.
  • Samitov, Y. Y.; Pudovik, M. A.; Kibardina, L. K.; Pudovik, A. N. Stereochemistry of Organophosphorus Compounds. VI. 1,4,2-Oxazaphosphorinanes – Stereoisomeric Products of Interaction of 1,3,2-Oxazaphospholanes with Substituted Aromatic Aldehydes and Ketones. Anisochronism of Exo- and Endocyclic Diastereotopic Groups in 1H NMR Spectra. Zh. Obshch. Khim. 1975, 45, 2134–2142.
  • Pudovik, A. N.; Batyeva, É. S.; Nesterenko, V. D. Reaction of Diphenylphosphinous Acid Phenylsulfamide with Benzaldehyde. Zh. Obshch. Khim. 1970, 40, 502–503.
  • Neilson, R. H.; Goebel, D. W. Novel Reaction of Silylaminophosphines with Ketones. J. Chem. Soc., Chem. Commun. 1979, 769–770. DOI: 10.1039/c39790000769.
  • Morton, D. W.; Neilson, R. H. Reactions of (Silylamino)Phosphines with Ketones and Aldehydes. Organometallics 1982, 1, 289–295. DOI: 10.1021/om00062a010.
  • Angelov, C. M.; Mazzuca, D. A.; Cavell, R. G. Nucleophilic Addition-Oxidation Reactions of σ3,λ3 Dialkyl(Silylamino)Phosphines with Mono and Disubstituted Acetylenes. Phosphorus Sulfur Silicon Relat. Elem. 1996, 109, 541–544. DOI: 10.1080/10426509608545210.
  • Ivanov, B. E.; Krokhina, S. S.; Chichkanova, T. V.; Ageeva, A. B. Dual Reactivity of Diphenylphosphinous and Phenylphosphonous Acid Amides in Reactions with N-Acetoxymethyl-Substituted Diethylamine, Benzamide, and Acetamide. Russ. Chem. Bull. 1986, 35, 2535–2539. DOI: 10.1007/BF01474216.
  • Ivanov, B. E.; Krokhina, S. S.; Chichkanova, T. V.; Kosacheva, É. M. Reaction of N-Chloromethyldiethylamine, N-Chloromethylbenzamide, N-Chloromethylphthalimide with Amides of Trivalent Phosphorus Acids. Russ. Chem. Bull. 1985, 34, 162–167. DOI: 10.1007/BF01157346.
  • Biricik, N.; Kayan, C.; Gümgüm, B. Bond Cleavage during the Insertion of Carbon Fragments into PIII-N Bonds in Bis(Diphenylphosphino) Amines. Helv. Chim. Acta 2014, 97, 1158–1164. DOI: 10.1002/hlca.201400074.
  • Maier, L. Process for Preparing Nitrogen-Containing Tertiary Phosphines and Phosphine Oxides. U.S. Patent 3,553,265, Jan 5, 1971.
  • Kreutzkamp, N.; Storck, K. Synthese Amino-Substituierter Phosphinoxyde. Naturwissenschaften 1960, 47, 497–498. DOI: 10.1007/BF00631058.
  • Frolovskii, V. A.; Studnev, Y. N.; Rozantsev, G. G. Synthesis of N-Substituted Aminomethylenediphenylphosphine Oxides. Zh. Obshch. Khim. 1996, 66, 692–693.
  • Garifzyanov, A. R.; Koshkin, S. A.; Davletshina, N. V.; Chibirev, Y. О.; Islamov, D. R.; Kataeva, ОN.; Cherkasov, R. A. Synthesis and Structure of Complexes of N-(Diphenylphosphoryl)methyl-N-Methylaminoacetic Acid with Ions of Cooper(II) and Nickel(II). Russ. J. Org. Chem. 2015, 51, 1659–1661. DOI: 10.1134/S1070428015110238.
  • Tajti, Á.; Szatmári, E.; Perdih, F.; Keglevich, G.; Bálint, E. Microwave-Assisted Kabachnik-Fields Reaction with Amino Alcohols as the Amine Component. Molecules, 24, 2019, 1640. DOI: 10.3390/molecules24081640.
  • Tajti, Á. Microwave-Assisted Synthesis of α-Aminophosphonates and Related Derivatives. PhD Dissertation, Budapest University of Technology and Economics, Budapest, Hungary, 2019.
  • Osipenko, N. G.; Tsvetkov, E. N.; Shcherbina, T. M.; Ranneva, Y. I.; Petrov, E. S.; Shatenshtein, A. I.; Kabachnik, M. I. Synthesis of Some Organophosphorus Cation-Solvating Agents and Solvents. Russ. Chem. Bull. 1977, 26, 1448–1452. DOI: 10.1007/BF00928526.
  • Cherkasov, R. A.; Talan, A. S.; Tarasov, A. V.; Garifzyanov, A. P. Synthesis of Novel Mono- and Bisaminophosphoryl Compounds and Their Membrane Transport Properties for Acidic Substrates. Russ. J. Gen. Chem. 2008, 78, 1330–1333. DOI: 10.1134/S1070363208070062.
  • Davletshina, N. V. Synthesis of Lipophilic Aminomethylphosphine Oxides and Membrane Extraction of Rare Earth and Alkali Metals with Their Participation. PhD Dissertation, Kazan State University, Kazan, Russian Federation, 2011.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Koshkin, S. A.; Davletshina, N. V. Synthesis and Acid–Base Properties of Aminophosphine Oxides on the Basis of Natural Amino Acids. Russ. J. Gen. Chem. 2012, 82, 1453–1454. DOI: 10.1134/S107036321208021X.
  • Garifzyanov, A. R.; Davletshina, N. V.; Valeeva, M. S.; Koshkin, S. A.; Cherkasov, R. A. Preparation and Membrane Transport Properties of Phosphorylated Derivatives of Sarcosine. Russ. J. Gen. Chem. 2014, 84, 1251–1252. DOI: 10.1134/S1070363214060345.
  • Davletshina, N. V.; Garifzyanov, A. R.; Stoyanov, O. V.; Cherkasov, R. A. Active Transport of Some Rare-Earth Metal Ions by Aminophosphoryl Membrane Transporters. Izv. Kazan Tech. Univ. 2014, 17, 31–36.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Galeev, R. R.; Kurnosova, N. V.; Davletshin, R. R.; Zakharov, S. V. Membrane Transport of Metal Ions with Lipophilic Aminomethylphosphine Oxides. Russ. J. Gen. Chem. 2011, 81, 1464–1469. DOI: 10.1134/S1070363211070103.
  • Wang, L.; Zhao, Y.; Li, X.; Dou, Z.; Zhang, F.; Li, K.; Yu, Y.; Wang, Y. Modified Isocyanate Compound Based on Phosphine Oxide Derivative, Its Synthesis Method and Application in Processing Polyurethane Foam. Chin. Patent 114437127, May 6, 2022.
  • Broekhof, N. L. J. M.; van Elburg, P.; van der Gen, A. The Synthesis of α-Amino-Substituted Diphenylphosphine Oxides. Recl. Trav. Chim. Pays-Bas. 1984, 103, 312–316. DOI: 10.1002/recl.19841031103.
  • Pellet-Rostaing, S.; Leydier, A.; Arrachart, G.; Turgis, R.; Dubois, V. Compounds with Phosphine Oxide and Amine Functions, Useful as Uranium(VI) Ligands, and Uses thereof, in Particular for Extracting Uranium(VI) from Aqueous Solutions of Sulphuric Acid. World Patent 2016/156591, Oct 6, 2016.
  • Kabachnik, M. I.; Medved’, T. Y.; Polikarpov, Y. M.; Stupin, N. P.; Fedorova; L. A. Method of Producing Tertiary Aminomethylphosphine Oxides. U.S.S.R. Patent 201,397, Oct 24, 1967.
  • Laskorin, B. N.; Fedorova, L. A.; Stupin, N. P.; Kabachnik, M. I.; Medved’, T. Y.; Polikarpov, Y. M.; Savina; L. A. Study of the Extraction Properties of Amino-Substituted Phosphine Oxides and Their N-Oxides. Dokl. Akad. Nauk. SSSR 1969, 189, 1017–1020.
  • Rusina, M. N.; Polikarpov, Y. M.; Yaroshenko, G. F.; Timakova, L. M. Amino-Substituted Phosphine Oxides as Rare Earth Element Extractants. Zh. Obshch. Khim. 1973, 43, 238–242.
  • Haodong, D.; Jijin, H.; Zhaoju, Z.; Zhongwei, W. Reactive Flame Retardant Containing P, N Synergistic Elements and Preparation Method Thereof. Chin. Patent 106380483, Feb 8, 2017.
  • Lemouzy, S.; Nguyen, D. H.; Camy, V.; Jean, M.; Gatineau, D.; Giordano, L.; Naubron, J.-V.; Vanthuyne, N.; Hérault, D.; Buono, G. Stereospecific Synthesis of α- and β-Hydroxyalkyl P-Stereogenic Phosphine–Boranes and Functionalized Derivatives: Evidence of the P = O Activation in the BH3-Mediated Reduction. Chemistry 2015, 21, 15607–15621. DOI: 10.1002/chem.201502647.
  • Hoarau, C.; Couture, A.; Deniau, E.; Grandclaudon, P. A New Synthetic Approach to Dioxoaporphines − Application to the Synthesis of N-Methylouregidione. Eur. J. Org. Chem. 2001, 2001, 2559–2567. DOI: 10.1002/1099-0690(200107)2001:13 < 2559::AID-EJOC2559 > 3.0.CO;2-3.
  • Maier, L. Organische Phosphorverbindungen XXV. Darstellung und Eigenschaften von Sekundären und Tertiären Phosphinsulfiden. Helv. Chim. Acta 1966, 49, 1249–1259. DOI: 10.1002/hlca.19660490406.
  • Maier, L. Diorgano-Aminomethylphosphine Sulfides and Process. U.S. Patent 3,518,262, Jun 30, 1970.
  • Broekhof, N. L. J. M.; Jonkers, F. L.; van der Gen, A. N-Methyl-N-Anilinomethyl Diphenylphosphine Oxide: A Versatile Reagent for the Synthesis of Enamines. Tetrahedron Lett. 1980, 21, 2671–2674. DOI: 10.1016/S0040-4039(00)92836-3.
  • Zorgdrager, J.; Broekhof, N. L. J. M.; van der Gen, A. Synthesis of Indoles Using (N-Arylaminomethyl)Diphenylphosphine Oxides. Recl. Trav. Chim. Pays-Bas. 2010, 108, 441–444. DOI: 10.1002/recl.19891081204.
  • Couture, A.; Deniau, E.; Grandclaudon, P. A Facile Synthesis of 2-Phosphoryl-Substituted 3-Hydroxyindole Derivatives. Synthesis 1992, 1992, 1276–1279. DOI: 10.1055/s-1992-26357.
  • Couture, A.; Deniau, E.; Grandclaudon, P. Synthese de N-Alkyl-3-Aryl-2-Diphenylphosphonoyl-1H-Pyrido[2,3-b][1,4]Thiazines. Phosphorus Sulfur Silicon Relat. Elem. 1992, 68, 91–97. DOI: 10.1080/10426509208038375.
  • Pindur, U.; Otto, C. A New Access to 2′-Amino-Substituted Vinylindoles as Donor-Activated Heterocyclic Dienes and Their First Diels-Alder Reactions. Tetrahedron 1992, 48, 3515–3526. DOI: 10.1016/S0040-4020(01)88490-8.
  • Pindur, U.; Otto, C. A New Access to 3-(2′-Aminovinyl)Indoles and Their First Diels-Alder Reactions. Chem. Lett. 1992, 21, 403–406. DOI: 10.1246/cl.1992.403.
  • Couture, A.; Deniau, E.; Gimbert, Y.; Grandclaudon, P. An Expeditious Synthesis of 3-Alkyl-, Aryl- and Heteroaryl-Indoles by Way of an Intramolecular Horner-Wittig Reaction. J. Chem. Soc., Perkin Trans. 1 1993, 2463–2466. DOI: 10.1039/P19930002463.
  • Couture, A.; Deniau, E.; Gimbert, Y.; Grandclaudon, P. A Convenient Synthetic Toute to 2-Diphenylphosphinoyl-3-Hydroxy, Amino and Alkyl Indole Derivatives. Tetrahedron 1993, 49, 1431–1444. DOI: 10.1016/S0040-4020(01)90195-4.
  • Couture, A.; Deniau, E.; Grandclaudon, P. Elaboration of the Benzazaphospholine Framework: A New Illustration of the Parham Protocol. J. Chem. Soc., Chem. Commun. 1994, 1329–1330. DOI: 10.1039/c39940001329.
  • Couture, A.; Deniau, E.; Grandclaudon, P. An Efficient One-Pot Synthesis of 3-(Aryl and Alkyl)Methylene-1H-Isoindolin-1-Ones via Aryne Cyclization and Horner Reaction of o-(and m-)Halogeno-N-Phosphorylmethylbenzamide Derivatives. Tetrahedron 1997, 53, 10313–10330. DOI: 10.1016/S0040-4020(97)00680-7.
  • Raap, J.; Nieuwenhuis, S.; Creemers, A.; Hexspoor, S.; Kragl, U.; Lugtenburg, J. Synthesis of Isotopically Labelled L-Phenylalanine and L-Tyrosine. Eur. J. Org. Chem. 1999, 1999, 2609–2621. DOI: 10.1002/(SICI)1099-0690(199910)1999:10 < 2609::AID-EJOC2609 > 3.0.CO;2-P.
  • Dietsche, W. Die Reaktion von Dreiwertigen Phosphorchloriden mit Orthoestern und deren Thioanaloga. Darstellung von C-Phosphorylierten Formaldehydacetalen. Justus Liebigs Ann. Chem. 1968, 712, 21–27. DOI: 10.1002/jlac.19687120103.
  • Shono, T.; Matsumura, Y.; Kanazawa, T. Stereoselective Synthesis of (±)-Conhydrine, (±)-Ephedrine, and (±)-N-Methylephedrine. Tetrahedron Lett. 1983, 24, 4577–4580. DOI: 10.1016/S0040-4039(00)85960-2.
  • Gazizov, M. B.; Ismagilov, R. K.; Shamsutdinova, L. P.; Karimova, R. F.; Sinyashin, O. G. Reactions of 4-Hydroxy-3,5-di-Tert-Butylbenzylidene Chloride with Aminals. Russ. J. Gen. Chem. 2006, 76, 1176–1177. DOI: 10.1134/S1070363206070322.
  • Gazizov, M. B.; Ismagilov, R. K.; Karimova, R. F.; Shamsutdinova, L. P.; Chernova, O. M.; Sinyashin, O. G. Dehydrochlorination of 4-Hydroxy-3,5-di-Tert-Butylbenzylidene Chloride with Aprotic Nonionogenic Reagents. Dokl Chem. 2008, 419, 47–49. DOI: 10.1134/S0012500808030014.
  • Couture, A.; Deniau, E.; Grandclaudon, P. Synthesis and Reactivity of Aliphatic and (Hetero) Aromatic N-Alkyl-N-(Diphenyloxophosphinyl)Methyl Carboxamides and Lactams. Synth. Commun. 1992, 22, 2381–2392. DOI: 10.1080/00397919208019095.
  • Couture, A.; Deniau, E.; Grandclaudon, P. A Convenient Synthesis of Enamides and Dienamides by Horner-Wittig and Wadsworth-Emmons Reactions. Tetrahedron Lett. 1993, 34, 1479–1482. DOI: 10.1016/S0040-4039(00)60323-4.
  • Couture, A.; Deniau, E.; Grandclaudon, P.; Woisel, P. A New Synthetic Route to 2-Alkyl-4-Aryl-1(2H)-Isoquinolones and 2-Alkyl-4-Aryl-1,2,3,4-Tetrahydroisoquinolines. Tetrahedron 1996, 52, 4433–4448. DOI: 10.1016/0040-4020(96)00092-0.
  • Couture, A.; Deniau, E.; Grandclaudon, P. A Simple, Convenient and General Method for the Synthesis of N-Acylalkylaminomethyl- and N-Acylalkylamino(Alkyl, Aryl, Heteroaryl)Methylphosphonates and -Phosphine Oxides. Synthesis 1994, 1994, 953–956. DOI: 10.1055/s-1994-25612.
  • Couture, A.; Deniau, E.; Woisel, P.; Grandclaudon, P. A Convenient Synthetic Route to N-Aryl and N-Alkylamino(Alkyl) Phosphonates and Phosphine Oxides. Tetrahedron Lett. 1995, 36, 2483–2486. DOI: 10.1016/0040-4039(95)00288-N.
  • Bakker, B. H.; Tjin A-Lim, D. S.; van der Gen, A. 2-(Diphenylphosphinoyl) Pyrrolidines; Versatile Reagents for the Synthesis of Heterocyclic Enamines and Enamides. Tetrahedron Lett. 1984, 25, 4259–4262. DOI: 10.1016/S0040-4039(01)81411-8.
  • Birum, G. H.; Wilson, J. D. Total Dealkylation of Esters of Trivalent Phosphorus and Promotion of Anhydride Formation by N,N,N’,N’-Tetramethylchloroformamidinium Chloride. J. Org. Chem. 1972, 37, 2730–2733. DOI: 10.1021/jo00982a022.
  • Riesel, L.; Franke, U.; Costisella, B.; Gross, H. α-Substituierte Phosphonate. XXXI. Zur Reaktion von N,N,N′,N′-Tetramethylchlorformamidiniumchlorid mit P-III-Verbindungen. J. Prakt. Chem. 1978, 320, 389–394. DOI: 10.1002/prac.19783200305.
  • Onys’ko, P. P.; Kim, T. V.; Rassukanaya, Y. V.; Kiseleva, E. I.; Sinitsa, A. D. Sigmatropic Isomerizations in Azaallyl Systems: XX. N-Alkylbenzimidoylphosphonates. Russ. J. Gen. Chem. 2004, 74, 1341–1349. DOI: 10.1007/s11176-005-0007-6.
  • Strelikheev, Y. A.; Smirnova, T. V.; Kovalenko, L. V. Preparation of (Dialkylaminomethyl)Dialkylphosphine Oxides. U.S.S.R. Patent 278,688, Dec 8, 1970.
  • Katritzky, A. R.; Wu, H.; Xie, L. A General and Convenient Synthesis of N-[(1-Diphenyloxophosphinyl)Alkyl]Carboxamides and Sulfamide. Synth. Commun. 1995, 25, 1187–1196. DOI: 10.1080/00397919508012682.
  • Petrov, K. A.; Chauzov, V. A.; Mal’kevich, N. Y. Derivatives of Phenophosphazine. Zh. Obshch. Khim. 1977, 47, 579–583.
  • King, N. P.; Powell, J. R.; Negoita-Giras, G.; Watts, J. M.; Álvarez, A. G.; Guetzoyan, L. J.; Freem, J. R.; Clarke, P. G.; Naylor, A. Gold Compounds and Thier Use in Therapy. World Patent 2018/220171, Dec 6, 2018.
  • Gross, H.; Costisella, B.; Haase, L. α-Substituierte Phosphonate. VIII. Zur Reaktion von Dimethylformamidderivaten mit Phosphorigsäurediestern und Phosphinoxiden. J. Prakt. Chem. 1969, 311, 577–585. DOI: 10.1002/prac.19693110407.
  • Gross, H.; Costisella, B. Über α-substituierte Phosphonate. IX. Derivate des Formylphosphonsäurediäthylesters. J. Prakt. Chem. 1969, 311, 925–929. DOI: 10.1002/prac.19693110610.
  • Prishchenko, A. A.; Livantsov, M. V.; Novikova, O. P.; Livantsova, L. I.; Petrosyan, V. S. Synthesis of the New Types of N-Substituted Aminomethylenebisorganophosphorus Acids and Their Derivatives. Heteroatom Chem. 2009, 20, 319–324. DOI: 10.1002/hc.20552.
  • Prishchenko, A. A.; Livantsov, M. V.; Petrosyan, V. S. Interaction of Some PH-Acids with Dimethylformamide Diethyl Acetal. Zh. Obshch. Khim. 1993, 63, 1902–1904.
  • Bálint, E.; Tajti, Á.; Dzielak, A.; Hägele, G.; Keglevich, G. Microwave-Assisted Synthesis of (Aminomethylene)Bisphosphine Oxides and (Aminomethylene)Bisphosphonates by a Three-Component Condensation. Beilstein J. Org. Chem. 2016, 12, 1493–1502. DOI: 10.3762/bjoc.12.146.
  • Tajti, Á.; Tóth, R. E.; Kalocsai, D.; Keglevich, G.; Bálint, E. Formation of Compounds with P–C–N Moiety by Microwave-Assisted Condensations. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1541–1542. DOI: 10.1080/10426507.2016.1212861.
  • Zhao, X.; Zhao, W.; Zhang, L.; Li, B.; Zhang, T.; Zhang, L. Reactive Phosphate Ester Flame Retardant for Preparing Environment-Friendly High-Resilience Polyurethane Foam. Chin. Patent 109651584, Apr 19, 2019.
  • Lim, T.; Kim, B. M. Synthesis of α-Aminophosphonates via Phosphonylation of an Aryne–Imine Adduct. J. Org. Chem. 2020, 85, 13246–13255. DOI: 10.1021/acs.joc.0c01410.
  • Zhao, P.; Li, P.; Xiao, J.; Wang, Y.; Hao, X.; Meng, A.; Liu, C. Synthesis and Antitumor Activities of α-Hydroxyamino Phosphine Oxides by Catalyst-Free Hydrophosphinylation of Nitrones. Chem. Commun. (Camb.) 2023, 59, 2624–2627. DOI: 10.1039/D2CC06981D.
  • Liu, C.; Meng, A.; Zhao, P.; Xiao, J.; Zhong, Q. Preparation Method of α-(Hydroxyamino)Diarylphosphine Oxide from Nitrone, and Its Application in Preparation of Anticancer Agent. Chin. Patent 115583970, Jan 10, 2023.
  • Vasil’ev, R. I.; Durmanova, N. V.; Garifzyanov, A. R.; Cherkasov, R. A. Synthesis and Electrode Activity of 1,12-Bis[di(p-Tolyl)Phosphinoyl]- 2,11-Dibutyl-2,11-Diaza-5,8-Dioxadodecane. Russ. J. Gen. Chem. 2003, 73, 994–995. DOI: 10.1023/A:1026333725179.
  • Garifzyanov, A. R.; Vasil’ev, R. I.; Cherkasov, R. A. Synthesis and Ionophoric Properties of α,ω-Diphosphorylated Aza Podands: II. Kabachnik-Fields Reaction as a Method for Design of α,ω-Diphosphorylated Aza Podands and Their Use for Determination of Metal Ions. Russ. J. Gen. Chem. 2005, 75, 217–224. DOI: 10.1007/s11176-005-0201-6.
  • Gaynullin, A. Z.; Davletshina, N. V.; Davletshin, R. R.; Garifzyanov, A. R.; Cherkasov, R. A. Synthesis of the Azapodands with Phosphoryl Terminal Groups. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1666–1667. DOI: 10.1080/10426507.2016.1225065.
  • Garifzyanov, A. R.; Davletshina, N. V.; Akhmadullina, L. I.; Gaynullin, A. Z.; Cherkasov, R. A. Synthesis, Transport, and Ionophoric Properties of α,ω-Biphosphorylated Azapodands: X. Membrane Transport of Organic Acids by Phosphorylated α,ω-Diazapodands. Russ. J. Gen. Chem. 2018, 88, 1462–1469. DOI: 10.1134/S1070363218070186.
  • Khusainova, N. G.; Tazetdinova, D. N.; Garifzyanov, A. R.; Cherkasov, R. A. Synthesis of Polyphosphorylated Diaminoalkanes. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1600–1601. DOI: 10.1080/10426507.2016.1216429.
  • Clark, H. Synthetic Approaches towards Dendrimeric Catalysts. PhD Dissertation, University of Ottawa, Ottawa, Canada, 2001.
  • Birum, G. H. Urylenediphosphonates. General Method for the Synthesis of α-Ureidophosphonates and Related Structures. J. Org. Chem. 1974, 39, 209–213. DOI: 10.1021/jo00916a019.
  • Otten, P. A.; van der Gen, A. The Reaction of α-Amino-Substituted Diphenylphosphine Oxide Anions with Elemental Sulfur and Selenium: A New Route to Thio- and Selenoamides. Recl. Trav. Chim. Pays-Bas. 1994, 113, 499–506. DOI: 10.1002/recl.19941131103.
  • Velaparthi, U.; Darne, C. P.; Olson, R. E.; Warrier, J. S. Substituted Piperazine Derivatives Useful as T Cell Activators. World Patent 2021/133749, Jul 1, 2021.
  • Hu, G.; Chen, W.; Ma, D.; Zhang, Y.; Xu, P.; Gao, Y.; Zhao, Y. Silver-Catalyzed, Aldehyde-Induced αC − H Functionalization of Tetrahydroisoquinolines with Concurrent C − P Bond Formation/N-Alkylation. J. Org. Chem. 2016, 81, 1704–1711. DOI: 10.1021/acs.joc.5b02625.
  • Broekhof, N. L. J. M.; van Elburg, P.; Hoff, D. J.; van der Gen, A. Enamine Synthesis Using the Horner-Wittig Reaction. Part 2. New Acyl Anion Equivalents Derived from (Aminomethyl)Diphenylphosphine Oxides. Recl. Trav. Chim. Pays-Bas. 1984, 103, 317–321. DOI: 10.1002/recl.19841031104.
  • Prauda, I.; Greiner, I.; Ludányi, K.; Keglevich, G. Efficient Synthesis of Phosphono‐ and Phosphinoxidomethylated N‐Heterocycles under Solvent‐Free Microwave Conditions. Synth. Commun. 2007, 37, 317–322. DOI: 10.1080/00397910601033856.
  • Keglevich, G.; Szekrényi, A.; Kovács, R.; Grün, A. Microwave Irradiation as a Useful Tool in Organophosphorus Syntheses. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 1648–1652. DOI: 10.1080/10426500902948003.
  • Zhenkun, M.; Shijie, H.; Jun, D. 8-Chloro-1-Cyclopropyl-7-Fluoro-9-Methyl-4-Oxo-4-Hydroxy-Quinolizine-3-Carboxylate and Synthetic Method Thereof. Chin. Patent 106543170, Mar 29, 2017.
  • Fedyk, A.; Slobodyanyuk, E. Y.; Stotska, O.; Vashchenko, B. V.; Volochnyuk, D. M.; Sibgatulin, D. A.; Tolmachev, A. A.; Grygorenko, O. O. Heteroaliphatic Dimethylphosphine Oxide Building Blocks: Synthesis and Physico-Chemical Properties. Eur. J. Org. Chem. 2021, 2021, 6591–6603. DOI: 10.1002/ejoc.202100581.
  • Broekhof, N. L. J. M.; Jonkers, F. L.; van der Gen, A. Enamine Synthesis by the Horner-Wittig Reaction. Tetrahedron Lett. 1979, 20, 2433–2436. DOI: 10.1016/S0040-4039(01)86312-7.
  • Mészáros, B. Complexes of Aminoalkylphosphineoxides. MSc Dissertaion, Univerzita Karlova v Praze, Praha, 2017.
  • Popoff, I. C.; Huber, L. K.; Block, B. P.; Morton, P. D.; Riordan, R. P. α-Aminophosphinic Acids and α-Aminophosphine Oxides. I. Alkyl-α-Aminoalkylphosphinic Acids, α-Aminoalkyl(Aryl)Phosphinic Acids, and α-Aminoalkyl(Diaryl)Phosphine Oxides. J. Org. Chem. 1963, 28, 2898–2900. DOI: 10.1021/jo01045a516.
  • Popoff, I. C.; Peter, B. B.; Huber, L. K. Phthalimidomethyl Phosphorus Compounds. U.S. Patent 3,222,378, Dec 7, 1965.
  • Popoff, I. C.; Block, B. P.; Huber, L. K. Aminoalkylphosphinic Acids. U.S. Patent 3,332,987, Jul 25, 1967.
  • Plenat, F.; Cassagne, M.; Cristau, H. J. Synthesis of New Phosphorus 2,4,5-Imidazolidinetriones. Tetrahedron 1995, 51, 9551–9558. DOI: 10.1016/0040-4020(95)00595-Y.
  • Novák, T.; Tatai, J.; Bakó, P.; Czugler, M.; Keglevich, G.; Tóke, L. Asymmetric Michael Addition Catalyzed by D-Glucose-Based Azacrown Ethers. Synlett 2001, 2001, 0424–0426. DOI: 10.1055/s-2001-11395.
  • Novák, T.; Bakó, P.; Keglevich, G.; Dobó, A.; Vékey, K.; Tóke, L. Synthesis of D-Glucose-Based Azacrown Ethers with Phosphinoxidoalkyl Side Chains and Their Application to an Enantioselective Reaction. J. Incl. Phenom. 2001, 40, 207–212. DOI: 10.1023/A:1011840831308.
  • Pradhan, B. S. Novel Pyrrole Derivatives and Their Synthesis. U.S. Patent 2011/0263870, Oct 27, 2011.
  • Eisenbarth, P.; Regitz, M. Untersuchungen an Diazoverbindungen und Aziden, XLIII. 1,2-Dewarpyridazine – Vorstufen zur Erzeugung von Azacyclobutadienen? Chem. Ber. 1984, 117, 445–454. DOI: 10.1002/cber.19841170204.
  • He, X.-L.; Zhao, H.-R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.-C. Asymmetric Barton–Zard Reaction to Access 3-Pyrrole-Containing Axially Chiral Skeletons. ACS Catal. 2019, 9, 4374–4381. DOI: 10.1021/acscatal.9b00767.
  • Spengler, J.; Burger, K. An Efficient Synthesis of N-Phosphinoylmethylamino Acids and Some of Their Derivatives. J. Chem. Soc., Perkin Trans. 1 1998, 2091–2096. DOI: 10.1039/a801052h.
  • Chauzov, V. A.; Studnev, Y. N.; Iznoskova, M. G.; Fokin, A. V. Preparation of N-(Phosphinylmethyl)Carpolactams. Zh. Obshch. Khim. 1989, 59, 479–479.
  • Adamek, J.; Węgrzyk-Schlieter, A.; Steć, K.; Walczak, K.; Erfurt, K. Michaelis-Arbuzov-Type Reaction of 1-Imidoalkyltriarylphosphonium Salts with Selected Phosphorus Nucleophiles. Molecules 2019, 24, 3405. DOI: 10.3390/molecules24183405.
  • Adamek, J.; Wegrzyk-Schlieter, A.; Stec, K. Method of Producing 1-(N-Imido)Alkylphosphonates, 1-(N-Imido)Alkylphosphinates and 1-(N-Imido)Alkylphosphine Oxides. Pol. Patent 239833, Jan 17, 2022.
  • Bálint, E.; Fazekas, E.; Kóti, J.; Keglevich, G. Synthesis of N,N-Bis(Dialkoxyphosphinoylmethyl)- and N,N-Bis(Diphenylphosphinoylmethyl)-β- and γ-Amino Acid Derivatives by the Microwave-Assisted Double Kabachnik–Fields Reaction. Heteroatom. Chem. 2015, 26, 106–115. DOI: 10.1002/hc.21221.
  • Katritzky, A. R.; Wu, H.; Xie, L.; Jiang, J. Synthesis of 1-(Benzotriazol-1-yl)Alkyldiphenylphosphine Oxides and Their Transformations to Novel Benzotriazol-1-yl-Substituted Cyclopropanes. J. Heterocycl. Chem. 1995, 32, 595–598. DOI: 10.1002/jhet.5570320238.
  • Gallagher, M. J. Substituent Effects on Geminal P-C-H Coupling Constants. Aust. J. Chem. 1968, 21, 1197–1204. DOI: 10.1071/CH9681197.
  • Balakrishna, M. S.; Suresh, D.; George, P. P.; Mague, J. T. Aminophosphines Derived from Morpholine and N-Methylpiperazine: Synthesis, Oxidation Reactions and Transition Metal Complexes. Polyhedron 2006, 25, 3215–3221. DOI: 10.1016/j.poly.2006.05.041.
  • Polikarpov, Y. M.; Shcherbakov, B. K.; Medved’, T. Y.; Kabachnik, M. I. New Polydentate Amino-Substituted Phosphine Oxides. Russ. Chem. Bull. 1978, 27, 1867–1869. DOI: 10.1007/BF00929240.
  • Matveev, S. V.; Matveeva, A. G.; Matrosov, E. I.; Shcherbakov, B. K.; Polikarpov, Y. M.; Kabachnik, M. I. Synthesis and Acid-Base Properties of Phosphorylated Diazacycloalkanes and Their Cyclic Analogs. Russ. Chem. Bull. 1994, 43, 1895–1901. DOI: 10.1007/BF00696324.
  • Minacheva, L. K.; Ivanova, I. S.; Kireeva, I. K.; Baulin, V. E.; Sakharova, V. G.; Tsivadze, A. Y.; Sergienko, V. S. Molecular Structure and Vibrational Spectrum of the Complex [ErL(H2O)(NO3)3] (L = 1,4,10,13-Tetraoxa-7,16-Diaza(Diphenylphosphinylmethyl)Cyclooctadecane). Zh. Neorg. Khim 2000, 45, 346–354.
  • Yatsimirskii, K. B.; Kabachnik, M. I.; Sinyavskaya, E. I.; Medved’, T. Y.; Polikarpov, Y. M.; Shcherbakov; B. K. Interaction of Alkali Metal 2,4-Dinitrophenolates with N,N’,N"-Tris(Diphenylphosphinylmethyl)-1,4,7-Triazacyclononane. Zh. Neorg. Khim. 1984, 29, 884–887.
  • Tsebrikova, G. S. Metal Complexes with Phosphorylated Derivatives of 1,4,7,10-Tetraazacyclododecane. PhD Dissertation, Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow, Russian Federation, 2019.
  • Mollier, H.; Vineens, M.; Vidal, M.; Pasqualini, R.; Duet, M. Cyclopendants Organophosphorés à Visée Ostéotrope. Bull. Soc. Chim. Fr. 1991, 128, 787–795.
  • Kong, L.-P.; Li, N.-K.; Zhang, S.-Y.; Chen, X.; Zhao, M.; Zhang, Y.-F.; Wang, X.-W. Highly Enantioselective Phosphination and Hydrophosphonylation of Azomethine Imines: Using Chiral Squaramide as a Hydrogen Bonding Organocatalyst. Org. Biomol. Chem. 2014, 12, 8656–8670. DOI: 10.1039/C4OB01472C.
  • Wang, X.; Kong, L. Synthesis Method for Chiral Phosphorus-Containing Pyrazolone Compound. Chin Patent 103923121, Jul 16, 2014.
  • Reisser, M.; Maas, G. Synthesis of Pyrroles from 1-Dialkylamino-3-Phosphoryl(or Phosphanyl)Allenes through 1,5-Cyclization of Conjugated Azomethine Ylide Intermediates. J. Org. Chem. 2004, 69, 4913–4924. DOI: 10.1021/jo049586o.
  • Li, X.; Xie, Y.; Yin, K.; Shen, R.; Zhu, D. p-Quinol Ethers and p-Quinone Monoacetals as Arylation and Oxidation Reagents: Tandem N-Arylation and α-Functionalization of Pyrrolidine via Redox-Neutral Three-Component Reaction. Synthesis 2022, 54, 2574–2584. DOI: 10.1055/a-1744-4566.
  • Wang, X.; Zhang, C.; Shen, R.; Han, L.-B. Three-Component Reactions of α-Amino Acids, p-Quinone Monoacetals, and Diarylphosphine Oxides to Selectively Afford 3-(Diarylphosphinyl)Anilides and N-Aryl-2-Diarylphosphinylpyrrolidines. J. Org. Chem. 2020, 85, 14753–14762. DOI: 10.1021/acs.joc.9b03426.
  • Yang, D.; Zhao, D.; Mao, L.; Wang, L.; Wang, R. Copper/DIPEA-Catalyzed, Aldehyde-Induced Tandem DecarboxylationCoupling of Natural α-Amino Acids and Phosphites or Secondary Phosphine Oxides. J. Org. Chem. 2011, 76, 6426–6431. DOI: 10.1021/jo200981h.
  • Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.; Liang, Y.-M.; Yang, S.-D. Copper-Catalyzed C–P Coupling through Decarboxylation. Chemistry 2011, 17, 5516–5521. DOI: 10.1002/chem.201003561.
  • Zhou, X.; Xiong, T.; Jiang, J. Gold-Catalyzed Redox Cycloisomerization/Nucleophilic Addition/Reduction: Direct Access to 2-Phosphoryl Indolin-3-Ones. Chem. Commun. (Camb.) 2022, 58, 8568–8571. DOI: 10.1039/D2CC02774G.
  • Wang, X.; Wang, Z. An Approach to 1-Phosphorylated Isoquinolines through Silver(I)-Catalyzed Tandem Reaction Involving C-N and C-P Bond Formation. Tetrahedron 2014, 70, 5720–5724. DOI: 10.1016/j.tet.2014.06.060.
  • Vinyukov, A. V.; Dmitriev, M. E.; Yarkevich, A. N.; Ragulin, V. V. Cyclic Amidoalkylation of Hydrophosphorylic Compounds. Synthesis of Proline Analogs. Russ. J. Gen. Chem. 2017, 87, 2898–2901. DOI: 10.1134/S107036321712026X.
  • Vinyukov, A. V. Single, Double and Cyclic Amidoalkylation of Hydrophosphoryl Compounds. PhD Dissertation, Institute of Physiologically Active Substances, Chernogolovka, Russian Federation, 2017.
  • Smolobochkin, A. V.; Turmanov, R. A.; Gazizov, A. S.; Appazov, N. O.; Burilov, A. R.; Pudovik, M. A. Synthesis of 2-(Diphenylphosphoryl)Pyrrolidine-1-Carboxamides Based on the Reaction of 1-(4,4-Diethoxybutyl)Ureas with Diphenyl Chlorophosphine. Russ. J. Gen. Chem. 2019, 89, 2143–2146. DOI: 10.1134/S1070363219100244.
  • Smolobochkin, A. V.; Turmanov, R. A.; Gazizov, A. S.; Kuznetsova, E. A.; Burilov, A. R.; Pudovik, M. A. Reaction of N-(4,4-Diethoxybutyl)Phosphamides with Chloro(Diphenyl)Phosphine. Synthesis of 2-(Diphenylphosphoryl)Pyrrolidines. Russ J. Org. Chem. 2020, 56, 1119–1121. DOI: 10.1134/S107042802006024X.
  • Smolobochkin, A. V.; Turmanov, R. A.; Gazizov, A. S.; Voloshina, A. D.; Voronina, J. K.; Sapunova, A. S.; Burilov, A. R.; Pudovik, M. A. One-Pot Imination / Arbuzov Reaction of 4-Aminobutanal Derivatives: Synthesis of 2-Phosphorylpyrrolidines and Evaluation of Anticancer Activity. Tetrahedron 2020, 76, 131369. DOI: 10.1016/j.tet.2020.131369.
  • Burger, K.; Heistracher, E.; Simmerl, R.; Eggersdorfer, M. Application of Hexafluoroacetone as Protecting and Activating Reagent in Amino Acid and Peptide Chemistry. Synthesis of Phosphorus Containing Sarcosine Derivatives via a New Electrophilic Sarcosine Synthone. Z. Naturforsch. B 1992, 47, 424–433. DOI: 10.1515/znb-1992-0321.
  • Rys, V.; Couture, A.; Deniau, E.; Grandclaudon, P. First Total Synthesis of Fumaridine. Tetrahedron 2003, 59, 6615–6619. DOI: 10.1016/S0040-4020(03)01067-6.
  • Deniau, E.; Enders, D.; Couture, A.; Grandclaudon, P. Asymmetric Synthesis of 3-Hetero-Substituted 2,3-Dihydro-1H-Soindol-1-Ones. Tetrahedron Asymmetry 2005, 16, 875–881. DOI: 10.1016/j.tetasy.2005.01.012.
  • Qi, F.; Fang, F.; Li, P. Catalyst-Free Phospha-Nucleophilic Substitution of Hydroxylactams by Diarylphosphine Oxide. Curr. Organocatalysis 2018, 5, 145–149. DOI: 10.2174/2213337205666180801095803.
  • Wang, Q.; Song, H.; Wang, Q. Studies on the Biological Activity of gem-Difluorinated 3,3′-Spirocyclic Indole Derivatives. Chin. Chem. Lett. 2022, 33, 859–862. DOI: 10.1016/j.cclet.2021.08.005.
  • Wang, Q.; Qu, Y.; Liu, Y.; Song, H.; Wang, Q. Synthesis of Functionalized Spirocyclic Indolines by Visible Light-Induced One-Pot Sequential Difluoromethylative Dearomatization, Hydroxylation, and Substitution Reactions. Adv. Synth. Catal. 2019, 361, 4739–4747. DOI: 10.1002/adsc.201900755.
  • Wang, Q.; Wang, Q.; Qu, Y.; Liu, Y.; Wang, Z.; Song, H. gem-Difluorinated Spiro-γ-Lactam Indoline Compound, Preparation Method Thereof and Application Thereof in Preventing and Treating Plant Diseases and Insect Pests. Chin Patent 111269237, 2020.
  • Gololobov, Y. G.; Krasnova, I. Y.; Barabanov, S. V.; Khrustalev, V. N.; Andronati, S. A.; Pavlovsky, V. I. 1,3-Phosphorotropic Migration in the C3-N = C5 Triad of 1,4-Benzodiazepines Accompanied by Isomerization of Ph2P-O-C3. N = C5 to Ph2P(O)-C5N = C3. Tetrahedron Lett. 2014, 55, 4879–4882. DOI: 10.1016/j.tetlet.2014.07.010.
  • Popovics-Tóth, N.; Rávai, B.; Tajti, Á.; Varga, B.; Bagi, P.; Perdih, F.; Szabó, P. T.; Hackler, L.; Puskás, L. G.; Bálint, E. Three-Component Synthesis, Utilization and Biological Activity of Phosphinoyl-Functionalized Isoindolinones. Org. Biomol. Chem. 2021, 19, 8754–8760. DOI: 10.1039/D1OB01610E.
  • Rávai, B.; Popovics-Tóth, N.; Tajti, Á.; Bálint, E. Synthesis of Isoindolinone Phosphonates and Their Related Derivatives by Multicomponent Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 599–600. DOI: 10.1080/10426507.2021.2012179.
  • Thakur, D.; Aggarwal, T.; Verma, A. K.; Muskan, S. Unveiling the Three-Component Phosphonylation on Alkynylaldehydes: Toolbox toward Fluorescent Molecules. J. Org. Chem. 2023, 88, 2474–2486. DOI: 10.1021/acs.joc.2c02915.
  • Volkov, P. A.; Gusarova, N. K.; Khrapova, K. O.; Telezhkin, A. A.; Albanov, A. I.; Vasilevskiy, S. F.; Trofimov, B. A. A Mechanistic Insight into the Chemoselectivity of the Reaction between 3-Phenyl-2-Propynenitrile, Secondary Phosphine Oxides and Pyridinoids. Mendeleev Commun. 2021, 31, 670–672. DOI: 10.1016/j.mencom.2021.09.026.
  • Gusarova, N. K.; Volkov, P. A.; Ivanova, N. I.; Khrapova, K. O.; Albanov, A. I.; Afonin, A. V.; Borodina, T. N.; Trofimov, B. A. One-Pot Regio- and Stereoselective Synthesis of Tertiary Phosphine Chalcogenides with (E)-N-Ethenyl-1,2-Dihydroquinoline Functionalities. Tetrahedron Lett. 2016, 57, 3776–3780. DOI: 10.1016/j.tetlet.2016.07.024.
  • Popovics-Tóth, N.; Turpanova, M.; Németh, K.; Hackler, L.; Puskás, L. G.; Bálint, E. Synthesis of Arylphosphinoyl-Functionalized Dihydroisoquinolines by Reissert-Type Reaction and Their Biological Evaluation. Tetrahedron 2022, 111, 132720. DOI: 10.1016/j.tet.2022.132720.
  • Telezhkin, A. A. Phosphorylation of Azines by Secondary Phosphine Chalcogenides Induced by Electron-Deficient Acetylenes. PhD Dissertation, A. E. Favorsky Irkutsk Institute of Chemistry, Irkutsk, Russian Federation, 2019.
  • Gao, Z.; Guo, Y. Enantioselective Phosphonation of Isoquinolines via Chiral Phosphoric Acid-Catalyzed Dearomatization. Chem. Commun. (Camb.) 2022, 58, 9393–9396. DOI: 10.1039/D2CC02811E.
  • Chen, Q.; Zheng, X.; Guo, F.; Liang, K.; Zhou, F. Transition-Metal-Free Addition of Dialkyl Phosphites to Phthalazin-2-Ium Bromide: Synthesis of α-Aminophosphonate Analogues. J. Org. Chem. 2021, 86, 18278–18286. DOI: 10.1021/acs.joc.1c02024.
  • Volkov, P. A.; Telezhkin, A. A.; Ivanova, N. I.; Khrapova, K. O.; Albanov, A. I.; Gusarova, N. K.; Trofimov, B. A. Chemoselective Vinylation of the Quinine Hydroxy Group with the System Electron-Deficient Acetylene/Diphenylphosphine Oxide: An Alternative to SNHAr Reaction. Russ J. Org. Chem. 2019, 55, 1971–1974. DOI: 10.1134/S1070428019120285.
  • Gusarova, N. K.; Volkov, P. A.; Ivanova, N. I.; Khrapova, K. O.; Albanov, A. I.; Trofimov, B. A. Steric Control of Regiodirectivity of Reductive N-Vinylation–C-Phosphorylation of Pyridines with the System Alkyl Propiolate–Secondary Phosphine Oxide. Russ. J. Gen. Chem. 2016, 86, 731–734. DOI: 10.1134/S1070363216030373.
  • Volkov, P. A.; Telezhkin, A. A.; Ivanova, N. I.; Khrapova, K. O.; Albanov, A. I.; Gusarova, N. K.; Trofimov, B. A. Three-Component Reaction of 4-Methylpyridine with Alkyl Propiolates and Secondary Phosphine Chalcogenides. Russ. J. Gen. Chem. 2018, 88, 912–918. DOI: 10.1134/S1070363218050122.
  • Gusarova, N. K.; Trofimov, B. A. Organophosphorus Chemistry Based on Elemental Phosphorus: Advances and Horizons. Russ. Chem. Rev. 2020, 89, 225–249. DOI: 10.1070/RCR4903.
  • Trofimov, B. A.; Volkov, P. A.; Telezhkin, A. A. Electron-Deficient Acetylenes as Three-Modal Adjuvants in SNH Reaction of Pyridinoids with Phosphorus Nucleophiles. Molecules 2021, 26, 6824. DOI: 10.3390/molecules26226824.
  • Gusarova, N. K.; Volkov, P. A.; Ivanova, N. I.; Arbuzova, S. N.; Khrapova, K. O.; Albanov, A. I.; Smirnov, V. I.; Borodina, T. N.; Trofimov, B. A. One-Pot Reductive N-Vinylation and C(4)-Phosphorylation of Pyridines with Alkyl Propiolates and Secondary Phosphine Chalcogenides. Tetrahedron Lett. 2015, 56, 4804–4806. DOI: 10.1016/j.tetlet.2015.06.062.
  • Gusarova, N. K.; Volkov, P. A.; Ivanova, N. I.; Khrapova, K. O.; Telezhkin, A. A.; Albanov, A. I.; Trofimov, B. A. Structural Effect in the Reductive Vinylation/Phosphorylation of Pyridines with Alkyl Propiolates and Secondary Phosphine Chalcogenides: Protonation vs. Zwitterion Generation. Mendeleev Commun. 2017, 27, 553–555. DOI: 10.1016/j.mencom.2017.11.004.
  • Trofimov, B. A.; Volkov, P. A.; Khrapova, K. O.; Telezhkin, A. A.; Ivanova, N. I.; Albanov, A. I.; Gusarova, N. K.; Chupakhin, O. N. Metal-Free Site Selective Cross-Coupling of Pyridines with Secondary Phosphine Chalcogenides Using Acylacetylenes as Oxidants. Chem. Commun. (Camb.) 2018, 54, 3371–3374. DOI: 10.1039/C8CC01155A.
  • Volkov, P. A.; Ivanova, N. I.; Khrapova, K. O.; Albanov, A. I.; Arbuzova, S. N.; Gusarova, N. K.; Trofimov, B. A. Synthesis of New N-Phosphorylated Vinylhydropyridines. Russ. J. Gen. Chem. 2015, 85, 1978–1981. DOI: 10.1134/S1070363215080319.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Koshkin, S. A. Synthesis of α-Aminophosphine Oxides with Chiral Phosphorus and Carbon Atoms. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 782–784. DOI: 10.1080/10426507.2010.524181.
  • Vagapova, L. I.; Amirova, L. R.; Burilov, A. R.; Garifzyanov, A. R.; Pudovik, M. A.; Kharlampidi, K. E. β- and γ-Amino Acetals Containing Phosphine Oxide Groups. Synthesis and Reactions with Resorcinol Derivatives. Russ J. Org. Chem. 2014, 50, 778–782. DOI: 10.1134/S1070428014060025.
  • Vagapova, L. I.; Burilov, A. R.; Voronina, J. K.; Syakaev, V. V.; Sharafutdinova, D. R.; Amirova, L. R.; Pudovik, M. A.; Garifzyanov, A. R.; Sinyashin, О. G. Phosphorylated Aminoacetal in the Synthesis of New Acyclic, Cyclic, and Heterocyclic Polyphenol Structures. Heteroatom Chem. 2014, 25, 178–185. DOI: 10.1002/hc.21153.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Devyatov, F. V.; Kurnosova, N. V.; Rahmaeva, A. I.; Davletshin, R. R. Acid-Base Properties of α-Aminomethylphosphine Oxides. Russ. J. Gen. Chem. 2012, 82, 1492–1503. DOI: 10.1134/S107036321209006X.
  • Davletshin, R. R. Synthesis, Transport and Ionophore Properties of Bis-α-Aminomethylphosphine Oxides and Phosphorylated Azapodands. PhD Dissertation, Kazan State University, Kazan, Russian Federation, 2011.
  • Vagapova, L. I.; Amirova, L. R.; Pavlova, E. Y.; Burilov, A. R.; Voronina, Y. K.; Syakaev, V. V.; Sharafutdinova, D. R.; Rizvanov, I. K.; Garifzyanov, A. R.; Pudovik, M. A. α-Amino Acetals Containing a Phosphonate or Phosphine Oxide Group. Synthesis and Reactions with Resorcinols. Russ J. Org. Chem. 2014, 50, 469–477. DOI: 10.1134/S1070428014040034.
  • Vagapova, L. I.; Abdrakhmanova, N. F.; Burilov, A. R.; Garifzyanov, A. R.; Bukharov, S. V.; Pudovik, M. A. Kabachnik–Fields Reaction in the Synthesis of New Acetal-Containing Aminophosphine Oxides. Russ. J. Gen. Chem. 2018, 88, 1912–1914. DOI: 10.1134/S1070363218090244.
  • Smolobochkin, A. V.; Gazizov, A. S.; Matylitsky, K. V.; Vagapova, L. I.; Burilov, A. R.; Pudovik, M. A. The Synthesis of Novel Aminoalkylphosphoryl Derivatives of Diarylmethane and Dibenzoxanthene Based on Acetals and Phenols. Russ. Chem. Bull. 2021, 70, 148–151. DOI: 10.1007/s11172-021-3069-7.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Koshkin, S. A. Synthesis of Optically Active α-Aminophosphine Oxides and Enantioselective Membrane Transport of Acids with Their Participation. Russ. J. Gen. Chem. 2011, 81, 773–774. DOI: 10.1134/S107036321104027X.
  • Petrov, K. A.; Chauzov, V. A.; Erokhina, T. S.; Chernobrovkina, L. P. Phosphorus-Containing Monoazo Dyes from Organophosphorus N-Arylaminoalkyl Compounds. Zh. Obshch. Khim. 1976, 46, 493–497.
  • Bálint, E.; Tripolszky, A.; Hegedűs, L.; Keglevich, G. Microwave-Assisted Synthesis of N,N-Bis(Phosphinoylmethyl)Amines and N,N,N-Tris(Phosphinoylmethyl)Amines Bearing Different Substituents on the Phosphorus Atoms. Beilstein J. Org. Chem. 2019, 15, 469–473. DOI: 10.3762/bjoc.15.40.
  • Bálint, E.; Takács, J.; Drahos, L.; Juranovič, A.; Kočevar, M.; Keglevich, G. α-Aminophosphonates and α-Aminophosphine Oxides by the Microwave-Assisted Kabachnik–Fields Reactions of 3-Amino-6-Methyl-2H-Pyran-2-Ones. Heteroatom Chem. 2013, 24, 221–225. DOI: 10.1002/hc.21086.
  • Bálint, E.; Fazekas, E.; Takács, J.; Tajti, Á.; Juranovič, A.; Kočevar, M.; Keglevich, G. Microwave-Assisted Synthesis of Organophosphorus Compounds. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 48–50. DOI: 10.1080/10426507.2012.743544.
  • Sowa, S.; Stankevič, M.; Flis, A.; Pietrusiewicz, K. M. Reduction of Tertiary Phosphine Oxides by BH3 Assisted by Neighboring Activating Groups. Synthesis 2018, 50, 2106–2118. DOI: 10.1055/s-0036-1591546.
  • Vagapova, L. I.; Voronina, J. K.; Syakaev, V. V.; Burilov, A. R.; Garifzyanov, A. R.; Pudovik, M. A. Synthesis and Structure of New 2-Aryl-Substituted Pyrrolidines Containing Phosphine Oxide Group. Mendeleev Commun. 2018, 28, 398–400. DOI: 10.1016/j.mencom.2018.07.019.
  • Bálint, E.; Tajti, Á.; Kalocsai, D.; Mátravölgyi, B.; Karaghiosoff, K.; Czugler, M.; Keglevich, G. Synthesis and Utilization of Optically Active α-Aminophosphonate Derivatives by Kabachnik-Fields Reaction. Tetrahedron 2017, 73, 5659–5667. DOI: 10.1016/j.tet.2017.07.060.
  • Tajti, Á.; Bálint, E.; Keglevich, G. Microwave-Assisted Synthesis of α-Aminophosphonates and Related Derivatives by the Kabachnik-Fields Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 379–381. DOI: 10.1080/10426507.2018.1547729.
  • Bálint, E. Application of Microwave Technology in Oorganic Chemical Syntheses. PhD Dissertation, Budapest University of Technology and Economics, Budapest, Hungary, 2013.
  • Kuznetsova, E. A.; Smolobochkin, A. V.; Rizbayeva, T. S.; Gazizov, A. S.; Voronina, J. K.; Lodochnikova, O. A.; Gerasimova, D. P.; Dobrynin, A. B.; Syakaev, V. V.; Shurpik, D. N.; et al. Diastereoselective Intramolecular Cyclization/Povarov Reaction Cascade for the One-Pot Synthesis of Polycyclic Quinolines. Org. Biomol. Chem. 2022, 20, 5515–5519. DOI: 10.1039/d2ob01031c.
  • Tripolszky, A.; Zoboki, L.; Bálint, E.; Kóti, J.; Keglevich, G. Microwave-Assisted Synthesis of α-Aminophosphine Oxides by the Kabachnik-Fields Reaction Applying Amides as the Starting Materials. Synth. Commun. 2019, 49, 1047–1054. DOI: 10.1080/00397911.2019.1584675.
  • Koshkin, S. A.; Garifzyanov, A. R.; Davletshina, N. V.; Kataeva, O. N.; Islamov, D. R.; Cherkasov, R. A.; Kolodyazhnaya, A. O.; Kolodyazhnyi, O. I.; Valeeva, M. S. Synthesis of New N-Phosphorylmethyl Amino Acid Derivatives. Steric Structure of 2-[(S)-N-Dicyclohexylphosphoryl-Methylamino]Propanoic Acid. Russ J. Org. Chem. 2014, 50, 596–598. DOI: 10.1134/S1070428014040253.
  • Koshkin, S. A.; Garifzyanov, A. R.; Davletshina, N. V.; Davletshin, R. R.; Stoyanov, O. V.; Cherkasov, R. A. Synthesis, Structure of New Phosphorylmethyl Derivatives of Amino Acids and Their Membrane-Transport Properties toward Alkali Metals. Izv. Kazan Tech. Univ. 2015, 18, 7–11.
  • Koshkin, S. A.; Garifzyanov, A. R.; Davletshina, N. V.; Davletshin, R. R.; Stoyanov, O. V.; Cherkasov, R. A.; Synthesis, K. Structure of New Phosphoryl Methyl Derivative Aminoacids and Their Membrane Transport Properties Related to Alkali Metals: An Engineering Approach with Multidisciplinary Applications. In Pathways to Modern Physical Chemistry: An Engineering Approach with Multidisciplinary Applications; Wolf, R., Zaikov, G. E., Haghi, A., Eds.; Apple Academic Press: New York, 2016, pp. 341–353.
  • Cherkasov, R. A.; Garifzyanov, A. R.; Koshkin, S. A. Synthesis of (S)-2-[(Dioctylphosphoryl)Methylamino]Propionic Acid from Trimethylsilyl 2-(Trimethylsilylamino)Propanoate. Russ J. Org. Chem. 2013, 49, 624–624. DOI: 10.1134/S1070428013040234.
  • Davletshin, R. R.; Gainullin, A. Z.; Davletshina, N. V.; Garifzyanov, A. R.; Ivshin, K. A.; Kataeva, O. N.; Cherkasov, R. A. Synthesis and Structure of N,N′-Bis(Dihexylphosphorylmethyl)-1,4-Diaminobutane. Russ. J. Gen. Chem. 2017, 87, 2093–2096. DOI: 10.1134/S1070363217090286.
  • Davletshin, R.; Zykova, K.; Davletshina, N.; Gataulina, A.; Islamov, D.; Ivshin, K.; Kuchaev, E. FT-IR and UV/Vis Spectroscopic Analyses of Liquid-Liquid Extraction of Cu(II), Nd(III) and Gd(III) by N,N’-Bis(Dioctylphosphorylmethyl)-1,4-Diaminobutane. Inorg. Chim. Acta 2022, 541, 121084. DOI: 10.1016/j.ica.2022.121084.
  • Garifzyanov, A. R.; Davletshin, R. R.; Davletshina, N. V.; Cherkasov, R. A. Synthesis, Transport and Ionophore Properties of α,ω-Biphosphorylated Azapodands: V. Acid–Base Properties of New Phosphorylated Azapodands and α,ω-Diamines and Their Participation in the Membrane Transport of I–III Groups Metal Ions. Russ. J. Gen. Chem. 2012, 82, 1646–1653. DOI: 10.1134/S1070363212100039.
  • Garifzyanov, A. R.; Davletshina, N. V.; Gaynullin, A. Z.; Ivshin, K. A.; Kataeva, O. N.; Cherkasov, R. A. Synthesis and Structure of a Copper(II) Complex of N,N’-Bis(di-Para-Tolylphosphinoylmethyl)-1,8-Diamino-3,6-Dioxaoctane. Russ. J. Gen. Chem. 2018, 88, 154–157. DOI: 10.1134/S1070363218010280.
  • Davletshina, N. V.; Nasyrov, I. R.; Khabibullina, A. R.; Davletshin, R. R.; Gaynullin, A. Z.; Cherkasov, R. A. Synthesis and Transport and Ionophoric Properties of α,ω-Diphosphorylated Azapodands: XII. Membrane Transport of Organic Acids by Diphosphorylated Diamines and Diazapodands. Russ. J. Gen. Chem. 2019, 89, 2424–2431. DOI: 10.1134/S1070363219120168.
  • Garifzyanov, A. R.; Davletshina, N. V.; Gayneev, A. M.; Gaynullin, A. Z.; Cherkasov, R. A. Synthesis, Transport, and Ionophoric Properties of α,ω-Diphosphorylated Azapodands: XI. Membrane Transport of Metals by Phosphorylated Diazapodands. Russ. J. Gen. Chem. 2018, 88, 1850–1852. DOI: 10.1134/S1070363218090141.
  • Mei, F.; Tian, C.; Li, H.; Huang, S.; Yu, Q.; Han, Y.; Wang, Z. A Novel Nitrogen-Containing DPO Derivative as Flame Retardant and co-Curing Agent for Epoxy Resin. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 115–123. DOI: 10.1080/10426507.2021.2012472.
  • Lakoud, S. G.; Aissa, R.; Guillot, R.; Toffano, M.; Aribi-Zouioueche, L. Novel One-Pot Access to Diastereoisomeric Tertiary Phospholanes Oxides by Using Enantiomerically Pure Phospholane Oxides under Catalyst-Free Conditions. ChemistrySelect 2020, 5, 379–383. DOI: 10.1002/slct.201903760.
  • Wu, M.-S.; Feng, Q.-Q.; Li, G.-N.; Wan, D.-H. 2-[Anilino(Diphenylphosphoryl)Methyl]Phenol from a Three-Component Kabachnik–Fields Reaction. Acta Crystallogr. C 2013, 69, 1070–1072. DOI: 10.1107/S0108270113022087.
  • Das, S.; Rawal, P.; Bhattacharjee, J.; Devadkar, A.; Pal, K.; Gupta, P.; Panda, T. K. Indium Promoted C(sp3)–P Bond Formation by the Domino A3-Coupling Method – A Combined Experimental and Computational Study. Inorg. Chem. Front. 2021, 8, 1142–1153. DOI: 10.1039/D0QI01210F.
  • Fiore, C.; Sovic, I.; Lukin, S.; Halasz, I.; Martina, K.; Delogu, F.; Ricci, P. C.; Porcheddu, A.; Shemchuk, O.; Braga, D.; et al. Kabachnik − Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustainable Chem. Eng. 2020, 8, 18889–18902. DOI: 10.1021/acssuschemeng.0c05744.
  • Keglevich, G.; Szekrényi, A. Eco-Friendly Accomplishment of the Extended Kabachnik–Fields Reaction; a Solvent- and Catalyst-Free Microwave-Assisted Synthesis of α-Aminophosphonates and α-Aminophosphine Oxides. Lett. Org. Chem. 2008, 5, 616–622. DOI: 10.2174/157017808786857598.
  • Pandey, V. K.; Tiwari, C. S.; Rit, A. Silver-Catalyzed One-Pot Three-Component Synthesis of α-Aminonitriles and Biologically Relevant α-Amino-Phosphonates. Chem. Asian J. 2022, 17, e202200703. DOI: 10.1002/asia.202200703.
  • Dmitriev, M. E.; Rossinets, E. A.; Ragulin, V. V. Amidoalkylation of Hydrophosphoryl Compounds. Russ. J. Gen. Chem. 2011, 81, 1092–1104. DOI: 10.1134/S1070363211060041.
  • Dmitriev, M. E.; Ragulin, V. V. New Opinions on the Amidoalkylation of Hydrophosphorylic Compounds. Tetrahedron Lett. 2010, 51, 2613–2616. DOI: 10.1016/j.tetlet.2010.03.020.
  • Wolińska, E.; Hałdys, K.; Góra, J.; Olszewski, T. K.; Boduszek, B.; Latajka, R. Phosphonic and Phosphinic Acid Derivatives as Novel Tyrosinase Inhibitors: Kinetic Studies and Molecular Docking. Chem. Biodivers. 2019, 16, e1900167. DOI: 10.1002/cbdv.201900167.
  • Lejczak, B.; Kafarski, P.; Gancarz, R. Plant Growth Regulating Properties of 1-Amino-1-Methylethylphosphonic Acid and Its Derivatives. Pestic. Sci. 1988, 22, 263–275. DOI: 10.1002/ps.2780220307.
  • Shioji, K.; Takao, M.; Okuma, K. Convenient Synthesis of Linear Spin Traps Containing Diphenylphosphoryl Groups. Chem. Lett. 2006, 35, 1332–1333. DOI: 10.1246/cl.2006.1332.
  • Shioji, Y.; Okuma, K. New Straight-Chain Type Spin Trapping Agent Having Diphenylphosphinyl Group. Jpn. Patent 2008-50295 Mar 6, 2008.
  • Zhuang, C.; Mei, F.; Duan, H.; Zhou, C.; Wu, J.; Zeng, C.; Wu, M.; Li, X.; Hou, J.; Wang, Z. Low Dielectric Flame Retardant Epoxy Resin and Preparation Method Thereof. Chin. Patent 114752037, Jul 15, 2022.
  • Wang, G. Furan-Based Phosphate Flame Retardant and Its Preparation Method. Chin. Patent 114349789, Apr 15, 2022.
  • Tao, J.; Yang, F.; Wu, T.; Shi, J.; Zhao, H.-B.; Rao, W. Thermal Insulation, Flame Retardancy, Smoke Suppression, and Reinforcement of Rigid Polyurethane Foam Enabled by Incorporating a P/Cu-Hybrid Silica Aerogel. Chem. Eng. J. 2023, 461, 142061. DOI: 10.1016/j.cej.2023.142061.
  • Collins, D. J.; Drygala, P. F.; Swan, J. M. Organophosphorus Compounds. XVIII. Synthesis of 2-Phenyl-2,3-Dihydro-1H-1,2-Benzazaphosphole 2-Sulfide by Pyrolysis of (2-Aminobenzyl)Phenyldithiophosphinic Acid. Aust. J. Chem. 1983, 36, 2095–2110. DOI: 10.1071/CH9832095.
  • Birum, G. H. Phosphorus Compounds U.S. Patent 4,036,913, Jul 19, 1977.
  • Biehler, J.-M.; Le Roy, P.; Lecolier, S. Oxydes de Phosphine Aminoalcoylés, Leur Procédé de Préparation et Leur Application à L’ignifugation Des Mousses Rigides de Polyuréthanne. Fr. Patent 2,238,709, Feb 21, 1975.
  • Goerlich, J. R.; Neda, I.; Well, M.; Fischer, A.; Jones, P. G.; Schmutzler, R. Über die Umsetzung von Phosphorverbindungen Mit Dem Strukturelement P(:X)H (X = O, S) Mit 1,3,5-Trimethylhexahydro-1,3,5-Triazin. Darstellung und Reaktionen α-(N-Methylamino)methyl-Substituierter Phosphorverbindungen. Z. Naturforsch. B 1993, 48, 1161–1168. DOI: 10.1515/znb-1993-0902.
  • Maier, L.; Spörri, H. Organic Phosphorus Compounds 104. Synthesis and Biological Activity of N-Hydroxycarbonylmethyl-Aminomethyl-Di(n-Propyl)- and -Di(n-Butyl)Phosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 1992, 70, 59–61. DOI: 10.1080/10426509208049151.
  • Maier, L. Organic Phosphorus Compounds 100. Synthesis and Properties of N-Hydroxycarbonylmethyl-Aminomethyl-Dialkylphosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 237–241. DOI: 10.1080/10426509108036825.
  • Kaukorat, T.; Neda, I.; Jones, P. G.; Schmutzler, R. Darstellung von Peptoiden mit Der Organoaminomethyl-Dimethylphosphinoxid-Gruppierung. Phosphorus Sulfur Silicon Relat. Elem. 1996, 112, 247–259. DOI: 10.1080/10426509608046368.
  • Maier, L. What Are the Requirements in the glyphosate Molecule in Order to Be Herbicidally Active? Phosphorus Sulfur Silicon Relat. Elem. 1999, 144, 429–432. DOI: 10.1080/10426509908546273.
  • Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau, C. A New Approach to Isoindolobenzazepines. A Simple Synthesis of Lennoxamine. Tetrahedron 2000, 56, 1491–1499. DOI: 10.1016/S0040-4020(00)00067-3.
  • Rybalko-Rosen, H.; Couture, A.; Grandclaudon, P. Approches Synthetiques vers les Aristolactames - Partie II. Connexion a L’Azote Lactamique de Segments Hydrocarbones Amines. Sci. Study Res. 2005, 6, 119–143.
  • Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Asymmetric Synthesis of (+)- and (−)-Latifine. Tetrahedron: Asymmetry 2003, 14, 1309–1316. DOI: 10.1016/S0957-4166(03)00175-7.
  • Lebrun, S.; Couture, A.; Deniau, E.; Grandclaudon, P. A New Synthesis of (+)- and (−)-Cherylline. Org. Biomol. Chem. 2003, 1, 1701–1706. DOI: 10.1039/B302168H.
  • Jolidon, S.; Rodriguez-Sarmiento, R. M.; Thomas, A. W.; Wyler, R. 2,3-Dihydro-isoindol-1-ones with Mao-b Inhibiting Activity. World Patent 2004/014856, Feb 19, 2004.
  • Oleksyszyn, J. An Amidoalkylation of Trivalent Phosphorus Compounds with P(O)H Functions Including Acetic Acid Solutions of PCl3, RPCl2 or R2PCl, Diesters of Phosphorus Acid and Phosphorus-III-Acids. J. Prakt. Chem. 1987, 329, 19–28. DOI: 10.1002/prac.19873290104.
  • Rassukana, Y. V.; Onys’ko, P. P.; Davydova, K. O.; Sinitsa, A. D. C-Phosphorylated N-(Trichloroethylidene)Sulfonamides: A New Type of Highly Electrophilic Imines. Eur. J. Org. Chem. 2004, 2004, 3643–3649. DOI: 10.1002/ejoc.200400086.
  • Goldeman, W.; Soroka, M. Preparation of Dialkyl 1-(Alkylamino)Alkylphosphonates, Alkyl [1-(Alkylamino)Alkyl]Phenylphosphinates and [1-(Alkylamino)Alkyl]Diphenylphosphine Oxides via ‘in Situ’ Generated Iminium Ions. Synthesis 2010, 2010, 2437–2445. DOI: 10.1055/s-0029-1218817.
  • Onys’ko, P. P.; Zamulko, K. A.; Kyselyova, O. I. N-(α-Hydroxytrihaloethyl)Carbamates in Synthesis of Phosphorus Analogs of Trihaloalanine Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 274–278. DOI: 10.1080/10426507.2015.1064920.
  • Onys’ko, P. P.; Zamulko, K. A.; Kyselyova, O. I.; Yelenich, I. P.; Rassukana, Y. V. Synthesis of Polyfluoroalkylated α-Aminophosphonic/Thiophosphonic Acids Derivatives. J. Fluor. Chem. 2016, 185, 191–196. DOI: 10.1016/j.jfluchem.2016.03.014.
  • Drach, B. S.; Dolgushina, I. Y.; Sinitsa, A. D. Application of ω-Chloro-ω-Acylaminoacetophenones for Synthesis of Phosphorylated Oxazoles. Zh. Obshch. Khim. 1975, 45, 1251–1255.
  • Kuźnik, A.; Mazurkiewicz, R.; Grymel, M.; Zielińska, K.; Adamek, J.; Chmielewska, E.; Bochno, M.; Kubica, S. A New Method for the Synthesis of α-Aminoalkylidenebisphosphonates and Their Asymmetric Phosphonyl-Phosphinyl and Phosphonyl-Phosphinoyl Analogues. Beilstein J. Org. Chem. 2015, 11, 1418–1424. DOI: 10.3762/bjoc.11.153.
  • Kuźnik, A.; Mazurkiewicz, R.; Zięba, M.; Erfurt, K. 1-(N-Acylamino)-1-Triphenylphosphoniumalkylphosphonates: General Synthesis and Prospects for Further Synthetic Applications. Tetrahedron Lett. 2018, 59, 3307–3310. DOI: 10.1016/j.tetlet.2018.07.040.
  • Adamek, J.; Węgrzyk, A.; Kończewicz, J.; Walczak, K.; Erfurt, K. 1-(N-Acylamino)alkyltriarylphosphonium Salts with Weakened Cα-P Bond Strength-Synthetic Applications. Molecules 2018, 23, 2453. DOI: 10.3390/molecules23102453.
  • Październiok-Holewa, A.; Adamek, J.; Mazurkiewicz, R.; Zielińska, K. Amidoalkylating Properties of 1-(N-Acylamino)Alkyltriphenylphosphonium Salts. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 205–212. DOI: 10.1080/10426507.2012.744014.
  • Rachoń, J.; Schöllkopf, U. (Diphenylphosphinyl)Isocyanessigsäure-tert-Butylester und Seine Verwendung in der Wittig-Horner-Reaktion mit Aldehyden. Liebigs Ann. Chem. 1981, 99–102. DOI: 10.1002/jlac.198119810116.
  • Shokol, V. A.; Doroshenko, V. V.; Derkach, G. I. Reaction of Haloalkyl Isocyanates with Trialkylphosphites and Alkylphosphinites. Zh. Obshch. Khim. 1970, 40, 1458–1466.
  • Kabachnik, M. M.; Ternovskaya, T. N.; Zobnina, E. V.; Beletskaya, I. P. Reactions of Hydrophosphoryl Compounds with Schiff Bases in the Presence of CdI2. Russ. J. Org. Chem. 2002, 38, 480–483. DOI: 10.1023/A:1016578602100.
  • Hoffmann, H.; Förster, H. Darstellung von α-Aminophosphonsäureestern und Verwandten Verbindungen. Monatsh. Chem. 1968, 99, 380–388. DOI: 10.1007/BF00908943.
  • Hall, R. G.; Riebli, P. The Concept of P-H Protection Extended to Phosphine Oxides: Preparation of Functional, Unsymmetrical Secondary and Tertiary Phosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 2002, 177, 1557–1562. DOI: 10.1080/10426500212269.
  • Liek, C.; Machnitzki, P.; Nickel, T.; Schenk, S.; Tepper, M.; Stelzer, O. Wasserlösliche Phosohane, XIV. Hydrophile Derivate des Triphenylphosphans mit NH2-, COOH- und P(O)(OR)2-Funktionalisierten Seitenketten. Z. Naturforsch. B 1999, 54, 1532–1542. DOI: 10.1515/znb-1999-1210.
  • Tepper, M. Synthese von Aminosäurephosphanen und Darstellung von Derivaten des Triphenylphosphans durch palladiumkatalysierte P-C-Kupplung. PhD Dissertation, University of Wuppertal, Wuppertal, Germany, 2000.
  • Bálint, E.; Tajti, Á.; Ádám, A.; Csontos, I.; Karaghiosoff, K.; Czugler, M.; Ábrányi-Balogh, P.; Keglevich, G. The Synthesis of α-Aryl-α-Aminophosphonates and α-Aryl-α-Aminophosphine Oxides by the Microwave-Assisted Pudovik Reaction. Beilstein J. Org. Chem. 2017, 13, 76–86. DOI: 10.3762/bjoc.13.10.
  • Chang, Y.-C.; Yuan, P.-T.; Hong, F.-E. C–H Bond Functionalization of 1,4-Benzoquinone by Silver-Mediated Regioselective Phosphination and Amination Reactions. Eur. J. Org. Chem. 2017, 2017, 2441–2450. DOI: 10.1002/ejoc.201700109.
  • Davletshin, R.; Khayarov, K.; Zykova, K.; Galkina, I.; Davletshina, N. y.; Ivshin, K.; Kataeva, O. Synthesis and Crystal Structure of New Ligand - N-Didodecylphosphinoxido-4-Nitrobenzyledenetetradecylammonium-4-Methylbenzenesulfonate. J. Organomet. Chem. 2020, 913, 121189. DOI: 10.1016/j.jorganchem.2020.121189.
  • Galkina, I. V.; Kiyamova, E. R.; Gaynullin, A. Z.; Bakhtiyarov, D. I.; Shulaeva, M. P.; Pozdeev, O. K.; Egorova, S. N.; Ivshin, K. A.; Kataeva, O. N.; Bakhtiyarova, Y. V.; et al. Synthesis and Structure of Novel Phosphorylated Azomethines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1679–1681. DOI: 10.1080/10426507.2016.1227822.
  • Liu, N.; Wang, L.; Wang, Z.-X. Room-Temperature Nickel-Catalysed Cross-Couplings of Aryl Chlorides with Arylzincs. Chem. Commun. (Camb.) 2011, 47, 1598–1600. DOI: 10.1039/C0CC03064C.
  • Kozlov, N. S.; Pak, V. D.; Britan, E. A. Synthesis of N-Arylamino Derivatives of Benzyldiethylphosphine Oxide. Zh. Obshch. Khim. 1979, 49, 2392–2392.
  • Arbuzova, S. N.; Verkhoturova, S. I.; Zinchenko, S. V.; Kolyvanov, N. A.; Chernysheva, N. A.; Bishimbaeva, G. K.; Trofimov, B. A. Catalyst- and Solvent-Free Hydrophosphorylation of Aldimines with Secondary Phosphine Chalcogenides: Synthesis of Tertiary α-Aminophosphine Oxides, Sulfides and Selenides. ChemistrySelect 2022, 7, e202202757. DOI: 10.1002/slct.202202757.
  • Galkina, I. V.; Khayarov, K. R.; Davletshin, R. R.; Gaynullin, A. Z.; Gerasimov, A. V.; Shulaeva, M. P.; Pozdeev, O. K.; Egorova, S. N.; Usupova, L. M.; Galkin, V. I. The Pudovik Reaction: The Synthesis of Bioactive α-Aminophosphonates with Long Alkyl Chains. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 463–466. DOI: 10.1080/10426507.2018.1539848.
  • Boduszek, B. A Simple Synthesis of Pyridine Aminophosphinic Acids and Pyridine Aminophosphine Oxides. The Unusual Cleavage of Pyridylmethyl-(N-Benzylamino)-Phenylphosphinic Acids and Phosphine Oxides in Acidic Solutions. Synth. Commun. 2003, 33, 4087–4094. DOI: 10.1081/SCC-120026350.
  • Olszewski, T. K.; Boduszek, B.; Sobek, S.; Kozłowski, H. Synthesis of Thiazole Aminophosphine Oxides, Aminophosphonic and Aminophosphinic Acids and Cu(II) Binding Abilities of Thiazole Aminophosphonic Acids. Tetrahedron 2006, 62, 2183–2189. DOI: 10.1016/j.tet.2005.12.016.
  • Olszewski, T. K.; Boduszek, B. Synthesis of New Thiazole-2, -4, and -5-yl-(Amino)Methylphosphonates and Phosphinates: Unprecedented Cleavage of Thiazole-2 Derivatives under Acidic Conditions. Tetrahedron 2010, 66, 8661–8666. DOI: 10.1016/j.tet.2010.09.026.
  • Olszewski, T. K.; Boduszek, B. Novel Amino Phosphorus Thiazole Derivatives and Processes for Their Preparation. Pol. Patent 201,263, Mar 31, 2009.
  • Olszewski, T.; Boduszek, B. Synthesis of New Imidazole Aminophosphine Oxides. Polish J. Chem. 2005, 79, 553–559.
  • Boduszek, B.; Olszewski, T. K.; Goldeman, W.; Grzegolec, K.; Blazejewska, P. Preparation of New Imidazol-2-yl-(Amino)Methylphosphonates, Phosphinates and Phosphine Oxides and Their Unexpected Cleavage under Acidic Conditions. Tetrahedron 2012, 68, 1223–1229. DOI: 10.1016/j.tet.2011.11.054.
  • Olszewski, T. K.; Boduszek, B. Preparation of Amino-Phosphine Oxide Derivatives of Imidazole and Process for Their Production. Pol. Patent 202,185, Jun 30, 2009.
  • Michalska, J.; Boduszek, B.; Olszewski, T. K. New Quinoline-2, -3, and 4-yl-(Amino)Methylphosphonates: Synthesis and Study on the C–P Bond Cleavage in Quinoline-2 and -4 Derivatives under Acidic Conditions. Heteroatom. Chem. 2011, 22, 617–624. DOI: 10.1002/hc.20704.
  • Sukale, S.; Niclas, H.-J.; Richter, H.-J.; Zölch, L. Verfahren zur Herstellung von neuen phosphorylsubstituierten 2-Aminomethyl-chinoxalin-Derivaten. Ger. Patent 234,869, Apr 16, 1986.
  • Niclas, H.-J.; Sukale, S.; Richter, H.-J. Darstellung von α-Diphenylphosphorylierten Bzw. α-Dialkoxyphosphorylierten 2-(Arylaminomethyl)chinoxalin-Derivaten. Z. Chem. 2010, 25, 368–369. DOI: 10.1002/zfch.19850251010.
  • Kolotilo, N. V.; Sinitsa, A. A.; Rassukanaya, Y. V.; Onys’ko, P. P. Sulfonyl- and N-Phosphorylbenzimidoylphosphonates. Russ. J. Gen. Chem. 2006, 76, 1210–1218. DOI: 10.1134/S1070363206080068.
  • Korenchenko, O. V.; Ivanov, Y. Y.; Aksinenko, A. Y.; Sokolov, V. B.; Martynov, I. V. Synthesis and Anticholinesterase Activity of Fluorine-Containing α-Aminophosphosphoryl Compounds. Pharm. Chem. J. 1992, 26, 489–492. DOI: 10.1007/BF00773074.
  • Aksinenko, A. Y.; Pushin, A. N.; Sokolov, V. B. The Easy P-C-Bond Cleavege of Fluorinated Phosphine Oxide. Phosphorus Sulfur Relat. Elem. 1993, 84, 249–251. DOI: 10.1080/10426509308034338.
  • Rassukana, Y. V. Trifluoropyruvate N-Diethoxyphosphorylimine in Reactions with Phosphoric Nucleophiles. Ukr. Khim. Zh. 2012, 78, 116–119.
  • Gancarz, R.; Wielkopolski, W.; Jaskuska, E.; Kafarski, P.; Lejczak, B.; Mastalerz, P.; Wieczorek, J. S. Phosphonic Analogues of Morphactins. Part IV: 9-Aminofluoren-9-Ylphosphine Oxides. Pestic. Sci. 1985, 16, 234–238. DOI: 10.1002/ps.2780160304.
  • Gancarz, R.; Mastalarz, P.; Jaskulska, E.; Wieczorek, J. S.; Wielkopolski, W. Preparation of 9-(Aminofluorenyl)Phosphine Oxides as Plant Growth Regulators. Pol. Patent 136, 534, Feb 28, 1987.
  • Messinger, P. Anlagerung von Phosphorigsäure-Diamiden und Ihren Phenylogen an Doppelbindungssysteme. Arch Pharm. Ber Dtsch Pharm. Ges. 1971, 304, 842–849. DOI: 10.1002/ardp.19713041109.
  • Luo, Q.; Yuan, Y.; Dong, C.; Huang, H.; Liu, S.; Zhao, J. Highly Effective Flame Retardancy of a Novel DPPA-Based Curing Agent for DGEBA Epoxy Resin. Ind. Eng. Chem. Res. 2016, 55, 10880–10888. DOI: 10.1021/acs.iecr.6b02083.
  • Fan, G.; Zhang, M.; Huang, X. Efficient Flame Retardant Dispersion Liquid for Epoxy Resin and Preparation Method Thereof. Chin. Patent, 107663278, Feb 6, 2018.
  • Rassukana, Y. V.; Onys’ko, P. P.; Davydova, K. O.; Sinitsa, A. D. A New Reaction of Phosphorylated N-Sulfonylimines with Hydrophosphoryl Agents Involving C→N Transfer of Phosphoryl Groups. Tetrahedron Lett. 2004, 45, 3899–3902. DOI: 10.1016/j.tetlet.2004.03.114.
  • Tejo, C.; Pang, J. H.; Ong, D. Y.; Oi, M.; Uchiyama, M.; Takita, R.; Chiba, S. Dearylation of Arylphosphine Oxides Using a Sodium Hydride–Iodide Composite. Chem. Commun. (Camb.) 2018, 54, 1782–1785. DOI: 10.1039/C8CC00289D.
  • Fernández, I.; Gómez, G. R.; Iglesias, M. J.; Ortiz, F. L.; Álvarez-Manzaneda, R. Tuning the Anionic Cyclization-Protonation of N-Benzyl(Diphenyl)-Phosphinamides. Highly Efficient Synthesis of Tetrahydrobenzo-1-Aza-2λ5-Phospholes Containing a 1,3-Cyclohexadiene System. Arkivoc 2005, 2005, 375–393. DOI: 10.3998/ark.5550190.0006.932.
  • Maier, L. Nitrogen-Containing Tertiary Phosphine Sulfides. U.S. Patent 3,632,649, Jan 4, 1972.
  • Maier, L. Organic Phosphorus Compounds. 46. Addition of Secondary Phosphine Sulfides to Schiff’s Bases. New Method for the Preparation of Tertiary Phosphine Sulfides. Phosphorus Relat. Group. V Elem. 1971, 1, 71–72.
  • Artem’ev, A.; Kolyvanov, N.; Oparina, L.; Gusarova, N.; Sutyrina, A.; Bagryanskaya, I.; Trofimov, B. Four-Component Reaction between Secondary Phosphines, Primary Amines, Aldehydes, and Chalcogens: A Facile Access to Functionalized α-Aminophosphine Chalcogenides. Synthesis 2016, 49, 677–684. DOI: 10.1055/s-006-1588127.
  • Nifant’ev, E. E.; Metlitskikh, S. V.; Koroteev, M. P.; Stash, A. I.; Bel’skii, V. K. New Example of the Application of Trivalent Phosphorus Derivatives in a Synthetic Chemistry of Carbohydrates. Russ. J. Gen. Chem. 2006, 76, 1005–1007. DOI: 10.1134/S1070363206060284.
  • Koroteev, A. M.; Bobrikova, A. A.; Koroteev, M. P.; Lysenko, K. A.; Nifant’ev, E. E. Reaction of Acetyl- and Alkylideneglycosylamines with Diphenylphosphinous Acid. Russ. J. Gen. Chem. 2008, 78, 185–191. DOI: 10.1134/S1070363208020059.
  • Bobrikova, A. A.; Koroteev, M. P.; Stash, A. I.; Bel’skii, V. K.; Nifant’ev, E. E. Reactions of Glycosylamines with Diphenylphosphine Oxide and Ethyl and Phenyl Phenylphosphinates. Russ J. Org. Chem. 2008, 44, 1150–1156. DOI: 10.1134/S1070428008080071.
  • Bobrikova, A. A.; Koroteev, M. P.; Koroteev, A. M.; Nelyubina, Y. V.; Nifant’ev, E. E. Phosphorylation of N-Glycosides Derived from Para-Substituted Aromatic Amines. Russ. Chem. Bull. 2008, 57, 2021–2027. DOI: 10.1007/s11172-008-0272-8.
  • Bobrikova, A. A.; Koroteev, M. P.; Levina, I. I.; Nifant’ev, E. E. Hydrophosphorylation of Monosaccharides Oximes and Hydrazones. Russ. J. Gen. Chem. 2009, 79, 1622–1631. DOI: 10.1134/S1070363209080064.
  • Bobrikova, A. A. Study of the Addition of Hydrophosphoryl Compounds to N-Glycosides. PhD Dissertation, Moscow Pedagogical State University, Moscow, Russian Federation, 2008.
  • Gaumont, A.-C.; Simon, A.; Denis, J.-M. Uncatalyzed Hydrophosphination of Multiple Bonds by Alkenyl- or Alkynyl-Phosphine-Oxides; Evidence for a P-H Activation. Tetrahedron Lett. 1998, 39, 985–988. DOI: 10.1016/S0040-4039(97)10755-9.
  • Guzik, M.; Olszewski, T. K.; Boduszek, B. An Approach to Asymmetric Synthesis of New Pyridine Aminophosphine Oxides. Preparation of the Diastereomerically Pure 1-(Pyridine-3-yl)-1-[N-(α-Methylbenzylamino)]-Methyl-Diphenylphosphine Oxides and 1-(Pyridine-3-yl)-1-[N-(α-Methylbenzylamino)]-Methyl-t-Butyl-Phenylphosphine Oxides. Polish J. Chem. 2007, 81, 1879–1885.
  • Zhou, Z.-Y.; Zhang, H.; Yao, L.; Wen, J.-H.; Nie, S.-Z.; Zhao, C.-Q. Double Asymmetric Induction during the Addition of (RP)-Menthyl Phenyl Phosphine Oxide to Chiral Aldimines. Chirality 2016, 28, 132–135. DOI: 10.1002/chir.22549.
  • Ingle, G. K.; Liang, Y.; Mormino, M. G.; Li, G.; Fronczek, F. R.; Antilla, J. C. Chiral Magnesium BINOL Phosphate-Catalyzed Phosphination of Imines: Access to Enantioenriched α-Amino Phosphine Oxides. Org. Lett. 2011, 13, 2054–2057. DOI: 10.1021/ol200456y.
  • Ingle, G. Chiral BINOL Metal Phosphate/Phosphoric Acid Catalyzed Enantioselective Addition of Phosphorus and Sulfur Nucleophiles to Imines and Epoxides. PhD Dissertation, University of South Florida, Tampa, U.S., 2012.
  • Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Chiral Guanidinium Salt Catalyzed Enantioselective Phospha-Mannich Reactions. Angew. Chem. Int. Ed. Engl. 2009, 48, 7387–7390. DOI: 10.1002/anie.200903971.
  • Zhao, D.; Mao, L.; Yang, D.; Wang, R. Zinc-Mediated Asymmetric Additions of Dialkylphosphine Oxides to α,β-Unsaturated Ketones and N-Sulfinylimines. J. Org. Chem. 2010, 75, 6756–6763. DOI: 10.1021/jo1014917.
  • Zhang, W.; Gilbertson, S. R. Diastereoselective Synthesis of N-Sulfinyl α-Aminophosphine Sulfides and Phosphines. Tetrahedron Lett. 2017, 58, 2175–2177. DOI: 10.1016/j.tetlet.2017.03.067.
  • Mitsuji, Y.; Jun, T.; Kaname, N.; Tatsuo, O.; Saburo, I. Promotion of Dehydrazination by Nitrobenzenesulfonyl Group from Phosphorus-Hydrazone Adducts. Bull. Chem. Soc. Jpn. 1985, 58, 377–378. DOI: 10.1246/bcsj.58.377.
  • Miao, W.; Gao, Y.; Li, X.; Gao, Y.; Tang, G.; Zhao, Y. Copper-Catalyzed Synthesis of Alkylphosphonates from H-Phosphonates and N-Tosylhydrazones. Adv. Synth. Catal. 2012, 354, 2659–2664. DOI: 10.1002/adsc.201200295.
  • Wu, L.; Zhang, X.; Chen, Q.-Q.; Zhou, A.-K. A Novel Copper-Catalyzed Reductive Coupling of N-Tosylhydrazones with H-Phosphorus Oxides. Org. Biomol. Chem. 2012, 10, 7859–7862. DOI: 10.1039/C2OB26414E.
  • Chen, Z.-S.; Zhou, Z.-Z.; Hua, H.-L.; Duan, X.-H.; Luo, J.-Y.; Wang, J.; Zhou, P.-X.; Liang, Y.-M. Reductive Coupling Reactions: A New Strategy for C(sp3)-P Bond Formation. Tetrahedron 2013, 69, 1065–1068. DOI: 10.1016/j.tet.2012.11.064.
  • Xu, P.; Wu, Z.; Zhou, N.; Zhu, C. Oxidative C(sp2)−H Phosphonation of Aldehyde Hydrazones. Org. Lett. 2016, 18, 1143–1145. DOI: 10.1021/acs.orglett.6b00257.
  • Bian, X.-W.; Zhang, L.; Shoberu, A.; Zou, J.-P. Mn(III)-Mediated Phosphinoylation of Aldehyde Hydrazones: Direct “One-Pot” Synthesis of α-Iminophosphine Oxides from Aldehydes. Tetrahedron 2021, 85, 132053. DOI: 10.1016/j.tet.2021.132053.
  • Xu, Z.; Li, Y.; Mo, G.; Zheng, Y.; Zeng, S.; Sun, P.-H.; Ruan, Z. Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Org. Lett. 2020, 22, 4016–4020. DOI: 10.1021/acs.orglett.0c01343.
  • Afarinkia, K.; Rees, C. W.; Cadogan, J. I. G. Synthesis of Organophosphorus Compounds via Silyl Esters of Phosphorous Acids. Tetrahedron 1990, 46, 7175–7196. DOI: 10.1016/S0040-4020(01)87899-6.
  • Afarinkia, K.; Cadogan, J. I. G.; Rees, C. W. Synthesis of Phosphinic and Phosphonic Analogues and C-Arylglycines. Synlett 1990, 1990, 415–416. DOI: 10.1055/s-1990-21111.
  • Rosas-Ortiz, J. A.; Pioquinto-Mendoza, J. R.; González-Sebastián, L.; Hernandez-Ortega, S.; Flores-Alamo, M.; Morales-Morales, D. Schiff Bases as Inspirational Motif for the Production of Ni(II) and Pd(II) Coordination and Novel Non-Symmetric Ni(II)-POCOP Pincer Complexes. Eur. J. Inorg. Chem. 2021, 2021, 2452–2463. DOI: 10.1002/ejic.202100146.
  • Allen, D. W.; Coles, S. J.; Hursthouse, M. B. Tavs Reactions of o-Halobenzaldimines with Ethyl Diphenylphosphinite. Synthesis and Crystal Structure of a Bis(Phosphine Oxide). Heteroatom Chem. 2005, 16, 242–245. DOI: 10.1002/hc.20117.
  • Sobanov, A. A.; Bakhtiyarova, I. V.; Zimin, M. G.; Pudovik, A. N. Interaction of Unsaturated Ketimines with Hydrophosphoryl Compounds. Zh. Obshch. Khim. 1985, 55, 1187–1188.
  • Nikogosyan, L. L.; Nersesyan, K. A.; Satina, T. Y.; Panosyan, G. A.; Mirzoyan, R. G.; Indzhikyan, M. G. Reaction of 1-Phenyl-2-Aza-1,3-Butadienes and 1-Phenyl-3-Alkoxy-2-Aza-1-Butenes with Some Nucleophiles. Zh. Obshch. Khim. 1990, 60, 2716–2721.
  • Shen, R.; Wang, X.; Zhang, S.; Dong, C.; Zhu, D.; Han, L.-B. Three-Component Reaction of p-Quinone Monoacetals, Amines and Diarylphosphine Oxides to Afford m-(Phosphinyl)Anilides. Adv. Synth. Catal. 2020, 362, 942–948. DOI: 10.1002/adsc.201901421.
  • Liu, T.; Li, Y.; Cheng, F.; Shen, X.; Liu, J.; Lin, J. Highly Chemo- and Regioselective C–P Cross-Coupling Reaction of Quinone Imine Ketals with Ar2P(O)H to Construct ortho-Amino Triarylphosphine Derivatives. Green Chem. 2019, 21, 3536–3541. DOI: 10.1039/C9GC00989B.
  • Yang, F.; Zhou, X.; Wei, Y.; Wang, L.; Jiang, J. Hydroquinine-Catalyzed Asymmetric 1,4-Hydrophosphination of in Situ Generated Aza-o-Quinone Methides with H-Phosphine Oxides. Org. Chem. Front. 2021, 8, 5064–5070. DOI: 10.1039/D1QO00823D.
  • Regitz, M.; Eckes, H. Carbene, 22. Phosphene: Abfangreaktionen Von (Diphenylmethylen)Phenyl-Phosphan-Oxid Durch [2 + 2]-Cycloaddition Mit Aldehyden. Chem. Ber. 1980, 113, 3303–3312. DOI: 10.1002/cber.19801131018.
  • Luo, Y.; Fu, Z.; Fu, X.; Du, C.; Xu, J. Microwave-Assisted Periselective Annulation of Triarylphosphenes with Aldehydes and Ketones. Org. Biomol. Chem. 2020, 18, 9526–9537. DOI: 10.1039/D0OB02011G.
  • Luo, Y.; Xu, J. Annulation of Diaryl(Aryl)Phosphenes and Cyclic Imines to Access Benzo-δ-Phospholactams. Org. Lett. 2020, 22, 7780–7785. DOI: 10.1021/acs.orglett.0c02346.
  • Topolski, M.; Rachon, J. Phosphorus Analogues of Amino Acids and Peptides. XII. Reaction of Sodium Diethyl Phosphite with Aromatic Aldazines and Hydrazones. Phosphorus Sulfur Silicon Relat. Elem. 1991, 55, 97–110. DOI: 10.1080/10426509108045928.
  • Huang, S.; Hou, X.; Li, J.; Tian, X.; Yu, Q.; Wang, Z. A Novel Curing Agent Based on Diphenylphosphine Oxide for Flame-Retardant Epoxy Resin. High Perform. Polym. 2018, 30, 1229–1239. DOI: 10.1177/0954008317745957.
  • Ding, Y.; Xu, D. Polyhydroxy Benzene Ring Phosphorus-Nitrogen Type Flame Retardant, Manufacturing Method and Application Thereof in Flame Retardant Polyurethane Hard Foam Material. Chin. Patent 108285523, Jul 17, 2018.
  • Ma, J.; Chen, C.; Yang, S.; Cui, C.; He, J.; Jiao, F. Modified Epoxy Resin Composition and Prepregs and Laminated Boards Prepared from Same. Chin. Patent 112679911 Apr 20, 2021.
  • Nitrogen and Phosphorus-Containing Epoxy Resin Fireproof Coating and Preparation Method Thereof. Chin. Patent 114262554, Apr 1, 2022.
  • Guo, W.; Zhang, D.; Liang, F.; Chen, S.; Sun, J.; Yu, K.; Li, W.; Pang, Z. Preparation of Furan Derivative as Flame Retardant Material. Chin. Patent 114409704 Apr 29, 2022.
  • Jiao, L.; Jia, N.; Liu, X.; Yang, L.; Zhao, C.; Li, Z.; Ma, X. Phosphorus Nitrogen Triazine Fire Retardant Containing P-C Bond and Its Preparation Method. Chin. Patent 115417896 Dec 2, 2022.
  • Luo, Q.; Yuan, Y.; Dong, C.; Liu, S.; Zhao, J. High Performance Fire-Retarded Epoxy Imparted by a Novel Phenophosphazine-Containing Antiflaming Compound at Ultra-Low Loading. Mater. Lett. 2016, 169, 103–106. DOI: 10.1016/j.matlet.2016.01.083.
  • Carramiñana, V.; Ochoa de Retana, A. M.; Palacios, F.; de los Santos, J. M. Synthesis and Antiproliferative Activity of Phosphorus Substituted 4-Cyanooxazolines, 2-Aminocyanooxazolines, 2-Iminocyanooxazolidines and 2-Aminocyanothiazolines by Rearrangement of Cyanoaziridines. Molecules 2021, 26, 4265. DOI: 10.3390/molecules26144265.
  • Couture, A.; Deniau, E.; Lebrun, S.; Grandclaudon, P.; Carpentier, J.-F. A New Route to Ene Carbamates, Precursors to Benzoindolizinones through Sequential Asymmetric Hydrogenation and Cyclization. J. Chem. Soc., Perkin Trans. 1 1998, 1403–1408. DOI: 10.1039/a709053f.
  • Zakharov, S. V.; Nuriazdanova, G. K.; Garifzyanov, A. R.; Galkin, V. I.; Cherkasov, R. A. Synthesis and Acid-Base Properties of α-Aminophosphoryl Compounds. Russ. J. Gen. Chem. 2004, 74, 873–881. DOI: 10.1023/B:RUGC.0000042422.61124.b3.
  • Iqbal, M.; Struijk, R. G.; Huskens, J.; Sypula, M.; Wilden, A.; Modolo, G.; Verboom, W. Synthesis and Evaluation of Ligands with Mixed Amide and Phosphonate, Phosphinoxide, and Phosphonothioate Sites for an(III)/Ln(III) Extraction. New J. Chem. 2012, 36, 2048–2059. DOI: 10.1039/c2nj40330g.
  • Troselj, P.; Bolgar, P.; Ballester, P.; Hunter, C. A. High-Fidelity Sequence-Selective Duplex Formation by Recognition-Encoded Melamine Oligomers. J. Am. Chem. Soc. 2021, 143, 8669–8678. DOI: 10.1021/jacs.1c02275.
  • Kaukorat, T.; Neda, I.; Jones, P. G.; Schmutzler, R. Formation of Sulfinamides and Sulfonamides Bearing the Organo-Aminomethylene-Dimethylphosphine Oxide or Sulfide Group. Phosphorus Sulfur Silicon Relat. Elem. 1997, 122, 33–47. DOI: 10.1080/10426509708043493.
  • Kaukorat, T.; Neda, I.; Schmutzler, R. Synthese und Eigenschaftenvon N-Phosphorylierten Aminomethylen-Dimethylphosphinoxiden und -Sulfiden. Z. Naturforsch. B 1995, 50, 1818–1832. DOI: 10.1515/znb-1995-1208.
  • Lachkova, V.; Varbanov, S.; Frank, W.; Keck, H. N-Dimethylphosphinoyl-Substituted Aminomethanephosphonic Acids. Z. Naturforsch. B 2010, 65, 556–564. DOI: 10.1515/znb-2010-0504.
  • Medved, T. Y.; Goryunova, I. B.; Bel’skii, F. I.; Kabachnik, M. I. Some Derivatives of Ethylenediaminobismethylphosphonic Acid. Russ. Chem. Bull. 1981, 30, 488–492. DOI: 10.1007/BF00949602.
  • Takahashi, K.; Cho, K.; Iwai, A.; Ito, T.; Iwasawa, N. Development of N-Phosphinomethyl-Substituted NHC-Nickel(0) Complexes as Robust Catalysts for Acrylate Salt Synthesis from Ethylene and CO2. Chemistry 2019, 25, 13504–13508. DOI: 10.1002/chem.201903625.
  • Kibardina, L. K.; Vagapova, L. I.; Burilov, A. R.; Garyfzyanov, A. R.; Pudovik, M. A. Synthesis of Novel Macrocyclic Ligands Containing Phosphoryl and Aminoacetal Fragments. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 10–12. DOI: 10.1080/10426507.2012.740699.
  • Vagapova, L. I.; Burilov, A. R.; Amirova, L. R.; Voronina, J. K.; Garifzyanov, A. R.; Abdrachmanova, N. F.; Pudovik, M. A. New Aminophosphonates (Aminophosphinoxides) Containing Acetal Groups in Reactions with Polyatomic Phenols. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1527–1529. DOI: 10.1080/10426507.2016.1212349.
  • Hatam, M.; Goerlich, J. R.; Schmutzler, R.; Gröger, H.; Martens, J. The Totally Protected Hydroxy Containing α-Amino Phosphonic Esters and α-Amino Phosphinoxides as Well as Their Carbamoyl Derivatives. Synth. Commun. 1996, 26, 3685–3698. DOI: 10.1080/00397919608003785.
  • Yamakoshi, K.; Harwood, S. J.; Kanai, M.; Shibasaki, M. Catalytic Asymmetric Addition of Diphenylphosphine Oxide to Cyclic Imines. Tetrahedron Lett. 1999, 40, 2565–2568. DOI: 10.1016/S0040-4039(99)00203-8.
  • Tashev, E.; Lachkova, V.; Keck, H.; Shenkov, S.; Kläui, W.; Varbanov, S. Carbamoyl and Thiocarbamoyl Derivatives of N-Benzyl-Aminomethyl-Dimethylphosphine Oxide. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 1757–1767. DOI: 10.1080/10426500490466364.
  • Vagapova, L. I.; Matylitskii, K. V.; Burilov, A. R.; Garifzyanov, A. R.; Pudovik, M. A. 1-(3,3-Diethoxypropyl)-1-[(Dihexylphosphoryl)Methyl]-3-Phenylurea in the Synthesis of 4-Aryl-Substituted Tetrahydropyrimidin-2-Ones. Russ. J. Gen. Chem. 2018, 88, 2442–2444. DOI: 10.1134/S1070363218110312.
  • Zimin, M. G.; Burilov, A. R.; Islamov, R. G.; Pominov, I. S.; Pudovik, A. N. Reactions of Chloral and Isothiocyanates with α-Aminophosphonates and Structure of Phosphorylated Thioureas. Zh. Obshch. Khim. 1980, 50, 2203–2210.
  • Clément, J.-L.; Fréjaville, C.; Tordo, P. DEPMPO and Lipophilic Analogues: Synthesis and EPR Studies. Res. Chem. Intermed 2002, 28, 175–190. DOI: 10.1163/156856702320267091.
  • Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Dramatically Different Photochemical Behaviour of 1-Aroyl-2-Methylene Piperidine and Pyrrolidine Derivatives. An Expeditious Synthesis of Ruspolinone. Tetrahedron Lett. 1996, 37, 7749–7752. DOI: 10.1016/0040-4039(96)01765-0.
  • Liu, X.-W.; Le, T. N.; Lu, Y.; Xiao, Y.; Ma, J.; Li, X. An Efficient Synthesis of Chiral Phosphinyl Oxide Pyrrolidines and Their Application to Asymmetric Direct Aldol Reactions. Org. Biomol. Chem. 2008, 6, 3997–4003. DOI: 10.1039/B811581H.
  • Grger, H.; Tehranfar, D.; Martens, J.; Goerlich, J. R.; Thnnessen, H.; Jones, P. G.; Schmutzler, R. Synthesis of Dimethyl 4-Thiazolidinylphosphine Oxides via Addition of Dimethylphosphine Oxide to 3-Thiazolines. Heteroatom Chem. 1997, 8, 207–215. DOI: 10.1002/(SICI)1098-1071(1997)8:3 < 207::AID-HC3 > 3.0.CO;2-9.
  • Xiong, T.; Zhou, X.; Jiang, J. Dearomative Oxyphosphorylation of Indoles Enables Facile Access to 2,2-Disubstituted Indolin-3-Ones. Org. Biomol. Chem. 2022, 20, 5721–5725. DOI: 10.1039/D2OB01063A.
  • Ogura, K.; Isozumi, I.; Takehara, T.; Suzuki, T.; Nakamura, S. Enantioselective Reaction of N-Unprotected Activated Ketimines with Phosphine Oxides Catalyzed by Chiral Imidazoline-Phosphoric Acids. Org. Lett. 2022, 24, 8088–8092. DOI: 10.1021/acs.orglett.2c03457.
  • Willson, M.; Bouissou, T.; Mathis, R.; Mathis, F. Etude de Quelques Composés Cycliques Polyfonctionnels Renfermant le Motif CO-N-CO et de Leurs Dérivés Phosphorylés. Liaisons Hydrogène et Spectres Infrarouge. Spectrochim. Acta A 1984, 40, 835–846. DOI: 10.1016/0584-8539(84)80173-7.
  • Yang, P.; Hong, G.; Tang, Z.; Wang, Q.; Zhong, Y.; Zhou, C.; Gong, Y.; Wang, L. Convenient Hydrophosphorylation of Dibenzo[b,f][1,4]Oxa-/Thiazepines by Acid Catalysis. ChemistrySelect 2022, 7, e202201082. DOI: 10.1002/slct.202201082.
  • Gröger, H.; Goerlich, J. R.; Schmutzler, R.; Martens, J. The First Synthesis of a 2H-1,4-Benzothiazine-Based Phosphine Oxide and Sulfide. Phosphorus Sulfur Silicon Relat. Elem. 2000, 166, 253–259. DOI: 10.1080/10426500008076546.
  • Iwanejko, J.; Wojaczyńska, E.; Turlej, E.; Maciejewska, M.; Wietrzyk, J. Octahydroquinoxalin-2(1H)-One-Based Aminophosphonic Acids and Their Derivatives—Biological Activity towards Cancer Cells. Materials 2020, 13, 2393. DOI: 10.3390/ma13102393.
  • Iwanejko, J.; Samadaei, M.; Pinter, M.; Senfter, D.; Madlener, S.; Kochel, A.; Rohr-Udilova, N.; Wojaczyńska, E. Cytotoxic Activity of Piperazin-2-One-Based Structures: Cyclic Imines, Lactams, Aminophosphonates, and Their Derivatives. Materials 2021, 14, 2138. DOI: 10.3390/ma14092138.
  • Olszewski, T.; Wojaczynska, E.; Iwanejko, J. Phosphonic Derivatives of Decahydroquinoxaline and Method for Producing Them. Pol. Patent 238, 317, Jun 4, 2018.
  • Alexandrova, E. A.; Lotsman, K. A.; Lyssenko, K. A.; Trishin, Y. G. Synthesis of Novel N,O-Macrocyclic Ligands, Functionalized by Phosphine Oxide Groups. Chem. Heterocycl. Comp. 2019, 55, 875–881. DOI: 10.1007/s10593-019-02551-0.
  • Trishin, Y. G.; Kudryavtseva, A. I.; Shafeeva, M. V.; Avdeeva, E. A.; Karpova, E. A. First Example of Phosphorylation of Macrocyclic Azomethine with Secondary Phosphine Oxides. Russ. J. Gen. Chem. 2013, 83, 2345–2346. DOI: 10.1134/S1070363213120244.
  • Volkov, P. A.; Gusarova, N. K.; Telezhkin, A. A.; Khrapova, K. O.; Ivanova, N. I.; Albanov, A. I.; Vakul’skaya, T. I.; Khutsishvili, S. S.; Trofimov, B. A. Catalyst-Free Regio- and Chemoselective Addition of Secondary Phosphine Oxides to Isoquinolines. Russ. Chem. Bull. 2020, 69, 1102–1105. DOI: 10.1007/s11172-020-2874-8.
  • Luo, K.; Chen, Y.-Z.; Chen, L.-X.; Wu, L. Autoxidative C(sp2)–P Formation: Direct Phosphorylation of Heteroarenes under Oxygen, Metal-Free, and Solvent-Free Conditions. J. Org. Chem. 2016, 81, 4682–4689. DOI: 10.1021/acs.joc.6b00592.
  • Yi-Biao, L.; Zhi-Hai, Y.; Zong-Cheng, W.; Zhong-Zhi, Z.; Xiu-Wen, C.; Synthesis. Crystal Structure and Antitumor Activities of 1,2,3,4-Tetrahydroquinoline-2,4-Diyl(Bisdiphenylphosphine Oxide) Derivatives. Chin. J. Struc. Chem. 2019, 38, 713–718.
  • Chen, X.; Li, Y.; Zhu, Z.; Huang, Y. 2,4-Bis(Diphenylphosphine Oxide)Tetrahydroquinoline Compound and Preparation Method and Application Thereof. World Patent 2020/037742, Feb 27, 2020.
  • Gao, Y.; Deng, H.; Zhang, S.; Xue, W.; Wu, Y.; Qiao, H.; Xu, P.; Zhao, Y. Nickel-Catalyzed One-Pot Tandem 1,4-1,2-Addition of P(O)H Compounds to 1,10-Phenanthrolines. J. Org. Chem. 2015, 80, 1192–1199. DOI: 10.1021/jo501842p.
  • Rawat, D.; Kumar, R.; Subbarayappa, A. Visible-Light Induced Phosphonation of Quinoxalines and Quinoxalin-2(1H)-Ones under Aerobic Metal-Free Conditions. Green Chem. 2020, 22, 6170–6175. DOI: 10.1039/D0GC02168G.
  • Xiong, Y.; Zhang, J.; Qi, L.; Zhang, Y.; Wang, T. Xidative C(SP2)-P Formation: Direct Construction of C-P Bond on Quinoxalines via Aromatic Phosphorous Oxide. ChemistrySelect 2021, 6, 657–662. DOI: 10.1002/slct.202004036.
  • Guan, R.; Zhao, H.; Cao, L.; Jiang, H.; Zhang, M. Ruthenium/Acid Co-Catalyzed Reductive α-Phosphinoylation of 1,8-Naphthyridines with Diarylphosphine Oxides. Org. Chem. Front. 2021, 8, 106–111. DOI: 10.1039/D0QO01284J.
  • Li, K.; Meng, F.; Jiang, W.; Shi, L. ZrCl4-Catalyzed Nucleophilic Dearomatization of 2-Hydroxy-Pyrimidines: A Concise Synthesis of Novel 3,4-Dihydropyrimidin-2(1H)-Ones Containing a Phosphonic Ester Group. Tetrahedron Lett. 2021, 73, 153149. DOI: 10.1016/j.tetlet.2021.153149.
  • Hu, C.; Hong, G.; Zhou, C.; Tang, Z.-C.; Han, J.-W.; Wang, L.-M. Electrochemically Facilitated Oxidative Coupling of Quinoxalin-2(1H)-Ones with Diarylphosphine Oxides and Pyrroles: A Green Protocol for C − P, C − C(sp2) Bond Formation. Asian J. Org. Chem. 2019, 8, 2092–2096. DOI: 10.1002/ajoc.201900484.
  • Li, K.-J.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C.; Sun, B.-G. Electrochemically Dehydrogenative C–H/P–H Cross-Coupling: Effective Synthesis of Phosphonated Quinoxalin-2(1H)-Ones and Xanthenes. Green Chem. 2019, 21, 4412–4421. DOI: 10.1039/C9GC01474H.
  • Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Direct Phosphonation of Quinoxalin-2(1H)-Ones under Transition-Metal-Free Conditions. Chem. Commun. (Camb.) 2016, 52, 2846–2849. DOI: 10.1039/C5CC08049E.
  • Zhang, H.-J.; Lin, W.; Wu, Z.; Ruan, W.; Wen, T.-B. Silver-Mediated Direct Phosphorylation of Benzothiazoles and Thiazoles with Diarylphosphine Oxides. Chem. Commun. (Camb.) 2015, 51, 3450–3453. DOI: 10.1039/C4CC10017D.
  • Chen, X.-L.; Li, X.; Qu, L.-B.; Tang, Y.-C.; Mai, W.-P.; Wei, D.-H.; Bi, W.-Z.; Duan, L.-K.; Sun, K.; Chen, J.-Y.; et al. Peroxides as “Switches” of Dialkyl H-Phosphonate: Two Mild and Metal-Free Methods for Preparation of 2-Acylbenzothiazoles and Dialkyl Benzothiazol-2-Ylphosphonates. J. Org. Chem. 2014, 79, 8407–8416. DOI: 10.1021/jo501791n.
  • Lin, W.; Su, F.; Zhang, H.-J.; Wen, T.-B. K2S2O8-Promoted Direct C–H Phosphorylation of (Benzo)Thiazoles. Eur. J. Org. Chem. 2017, 2017, 1757–1759. DOI: 10.1002/ejoc.201700022.
  • Li, L.; Wang, J.-J.; Wang, G.-W. Manganese(III) Acetate-Promoted Cross-Coupling Reaction of Benzothiazole/Thiazole Derivatives with Organophosphorus Compounds under Ball-Milling Conditions. J. Org. Chem. 2016, 81, 5433–5439. DOI: 10.1021/acs.joc.6b00786.
  • Luo, K.; Chen, Y.-Z.; Yang, W.-C.; Zhu, J.; Wu, L. Cross-Coupling Hydrogen Evolution by Visible Light Photocatalysis toward C(sp2)–P Formation: Metal-Free C–H Functionalization of Thiazole Derivatives with Diarylphosphine Oxides. Org. Lett. 2016, 18, 452–455. DOI: 10.1021/acs.orglett.5b03497.
  • Zhu, P.-W.; Yang, Y.-T.; Li, Y.; Zhu, J.; Wu, L. Electrochemical Oxidative C-H Phosphonylation of Thiazole Derivatives in Ambient Conditions. Mol. Catal. 2022, 517, 112022. DOI: 10.1016/j.mcat.2021.112022.
  • Heo, Y.; Cho, D. H.; Mishra, M. K.; Jang, D. O. Efficient One-Pot Synthesis of α-Aminophosphonates from Aldehydes and Ketones Catalyzed by Ytterbium(III) Triflate. Tetrahedron Lett. 2012, 53, 3897–3899. DOI: 10.1016/j.tetlet.2012.05.068.
  • Shioji, K.; Tsukimoto, S.; Tanaka, H.; Okuma, K. Synthesis of 5-(Alkylphenylphosphoryl)-5-Methyl-3,4-Dihydro-2H-Pyrroline N-Oxide as a New Spin Trapping Reagent. Chem. Lett. 2003, 32, 604–605. DOI: 10.1246/cl.2003.604.
  • Shioji, K.; Matsumoto, A.; Takao, M.; Kurauchi, Y.; Shigetomi, T.; Yokomori, Y.; Okuma, K. Cycloadditions of 3,4-Dihydro-2H-Pyrrole N-Oxide with Thioketones and a Selenoketone. Bull. Chem. Soc. Jpn. 2007, 80, 743–746. DOI: 10.1246/bcsj.80.743.
  • Okuma, K.; Shioji, Y. New Spin-Trapping Agent Having Phosphinyl Group. Jpn. Patent 2006-335738 Dec 14, 2006.
  • Neda, I.; Pinchuk, V. A.; Fischer, A.; Jones, P. G.; Schmutzler, R.; Shermolovich, Y. G. Addition Reactions of Compounds with the P(:O)H Group to Fluorinated Ketimines. J. Fluor. Chem. 1995, 70, 127–133. DOI: 10.1016/0022-1139(94)03092-E.
  • Rassukana, Y.; Kolotylo, M.; Sinitsa, O.; Pirozhenko, V.; Onys’ko, P. α-Iminotrifluoroethylphosphonates: The First Representatives of N-H Imidoyl Phosphonates. Synthesis 2007, 2007, 2627–2630. DOI: 10.1055/s-2007-983838.
  • Martynov, I. V.; Aksinenko, A. Y.; Chekhlov, A. N.; Sokolov, V. B. Interaction of Hexafluoroacetone Imine with PH-Acids. Zh. Obshch. Khim. 1989, 59, 809–811.
  • Wang, X.; Ou, Y.; Peng, Z.; Yu, G.; Huang, Y.; Li, X.; Huo, Y.; Chen, Q. TBHP/NH4I-Mediated Direct N–H Phosphorylation of Imines and Imidates. J. Org. Chem. 2019, 84, 14949–14956. DOI: 10.1021/acs.joc.9b02301.
  • Bálint, E.; Fazekas, E.; Pongrácz, P.; Kollár, L.; Drahos, L.; Holczbauer, T.; Czugler, M.; Keglevich, G. N-Benzyl and N-Aryl Bis(Phospha-Mannich Adducts): Synthesis and Catalytic Activity of the Related Bidentate Chelate Platinum Complexes in Hydroformylation. J. Organomet. Chem. 2012, 717, 75–82. DOI: 10.1016/j.jorganchem.2012.07.031.
  • Bálint, E.; Fazekas, E.; Tripolszky, A.; Kangyal, R.; Milen, M.; Keglevich, G. Synthesis of α-Aminophosphonate Derivatives by Microwave-Assisted Kabachnik-Fields Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 655–659. DOI: 10.1080/10426507.2014.984022.
  • Keglevich, G.; Szekrényi, A.; Szöllősy, Á.; Drahos, L. Synthesis of Bis(Phosphonatomethyl)-, Bis(Phosphinatomethyl)-, and Bis(Phosphinoxidomethyl)Amines, as Well as Related Ring Bis(Phosphine) Platinum Complexes. Synth. Commun. 2011, 41, 2265–2272. DOI: 10.1080/00397911.2010.501478.
  • Bálint, E.; Fazekas, E.; Pintér, G.; Szollosy, A.; Holczbauer, T.; Czugler, M.; Drahos, L.; Körtvélyesi, T.; Keglevich, G. Synthesis and Utilization of the Bis(>P(O)CH2)amine Derivatives Obtained by the Double Kabachnik–Fields Reaction with Cyclohexylamine; Quantum Chemical and X-Ray Study of the Related Bidentate Chelate Platinum Complexes. Curr. Org. Chem. 2012, 16, 547–554. DOI: 10.2174/138527212799499822.
  • Davletshina, N. V.; Koshkin, S. A.; Garifzyanov, A. R.; Davletshin, R. R.; Filimonova, M. A.; Cherkasov, R. A. Membrane Transport of Alkali Metals with Phosphorylmethyl Derivatives of Amino Acids. Russ. J. Gen. Chem. 2015, 85, 1791–1792. DOI: 10.1134/S1070363215070403.
  • Bálint, E.; Fazekas, E.; Drahos, L.; Keglevich, G. The Synthesis of N,N-Bis(Dialkoxyphosphinoylmethyl)- and N,N-Bis(Diphenylphosphinoylmethyl)glycine Esters by the Microwave-Assisted Double Kabachnik–Fields Reaction. Heteroatom Chem. 2013, 24, 510–515. DOI: 10.1002/hc.21126.
  • Tripolszky, A.; Bálint, E.; Keglevich, G. Microwave-Assisted Synthesis of α-Aminophosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 345–348. DOI: 10.1080/10426507.2018.1541898.
  • Arbanov, S. V.; A, T. T.; A, E. R. Functionalized Nitrogen-Containing Tertiary Phosphine Oxides. Phosphorus Sulfur Silicon Relat. Elem. 1997, 127, 27–37. DOI: 10.1080/10426509708040493.
  • Lachkova, V.; Varbanov, S.; Hägele, G.; Keck, H.; Tosheva, T. Urea and Thiourea Derivatives of Bis(Dimethyl-Phosphinoylmethyl)-Amine. Phosphorus Sulfur Silicon Relat. Elem. 2002, 177, 1303–1313. DOI: 10.1080/10426500211707.
  • Saeed, S.; Rashid, N.; Ali, M.; Hussain, R.; Jones, P. Synthesis, Spectroscopic Characterization, Crystal Structure and Pharmacological Properties of Some Novel Thiophene-Thiourea Core Derivatives. Eur. J. Chem. 2010, 1, 221–227. DOI: 10.5155/eurjchem.1.3.221-227.124.
  • Lin, B.; Lu, G.; Lin, R.; Cui, Y.; Liu, Y.; Tang, G.; Zhao, Y. Metal-Free Synthesis of α-Aminophosphonates from Tertiary Amines and P(O)H Compounds via a Cross-Dehydrogenative Coupling Reaction. Synlett 2018, 29, 2697–2700. DOI: 10.1055/s-0037-1610306.
  • Xia, Z.; Qin, L.; Zhou, W.; Wang, H.; Yu, B.; Sun, Z.; Qian, J.; He, M. An Efficient Aerobic Oxidative Phosphonation of α-Amino C-H Bonds over CoNiFe Hydrotalcite. Tetrahedron Lett. 2019, 60, 151121. DOI: 10.1016/j.tetlet.2019.151121.
  • Lin, B.; Shi, S.; Lin, R.; Cui, Y.; Fang, M.; Tang, G.; Zhao, Y. Cobalt-Catalyzed Oxidative C(sp3)−H Phosphonylation for αAminophosphonates via C(sp3)−H/P(O)−H Coupling. J. Org. Chem. 2018, 83, 6754–6761. DOI: 10.1021/acs.joc.8b00674.
  • Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Li, C.; Xiao, J. Reactions Catalysed by a Binuclear Copper Complex: Aerobic Cross Dehydrogenative Coupling of N-Aryl Tetrahydroisoquinolines. Chemistry 2017, 23, 3051–3061. DOI: 10.1002/chem.201604749.
  • Xie, J.; Li, H.; Xue, Q.; Cheng, Y.; Zhu, C. A Scalable, Efficient Gold-Catalyzed Oxidative Phosphonation of sp3 C-H Bonds Using Air as Sustainable Oxidant. Adv. Synth. Catal. 2012, 354, 1646–1650. DOI: 10.1002/adsc.201200360.
  • Huo, C.; Wang, C.; Wu, M.; Jia, X.; Wang, X.; Yuan, Y.; Xie, H. Catalytic Amounts of Triarylaminium Salt Initiated Aerobic Oxidative Coupling of N-Aryl Tetrahydroisoquinolines. Org. Biomol. Chem. 2014, 12, 3123–3128. DOI: 10.1039/C3OB42454E.
  • Zhang, Y.; Luo, S.; Feng, B. Iron-Catalyzed Oxidative Phosphorylation of α-sp3-C-H Bonds of N-Aryl Tetrahydroisoquinolines with Air as Oxidant. Chin. J. Org. Chem. 2014, 34, 2249–2254. DOI: 10.6023/cjoc201408025.
  • Yoo, W.-J.; Kobayashi, S. Efficient Visible Light-Mediated Cross-Dehydrogenative Coupling Reactions of Tertiary Amines Catalyzed by a Polymer-Immobilized Iridium-Based Photocatalyst. Green Chem. 2014, 16, 2438–2442. DOI: 10.1039/C4GC00058G.
  • Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Highly Efficient Visible-Light-Induced Aerobic Oxidative C–C, C–P Coupling from C–H Bonds Catalyzed by a Gold(III)-Complex. Org. Biomol. Chem. 2013, 11, 1606–1609. DOI: 10.1039/C3OB27400D.
  • Gao, F.; Xiao, W.; Li, S.; Yu, B. A Polyniobotungstate-Based Hybrid for Visible-Light-Induced Phosphorylation of N-Aryl-Tetrahydroisoquinoline. ACS Appl. Mater. Interfaces 2022, 14, 19278–19284. DOI: 10.1021/acsami.1c23753.
  • Wang, F.; Yu, D.; Chen, Y.; Sun, J.; Wang, J.-Y.; Zhou, M.-D. Cross-Dehydrogenative Coupling of N-Aryl Tetrahydroisoquinolines Catalyzed by an Anthraquinone-Containing Polymeric Photosensitizer. Chem. Asian J. 2021, 16, 4087–4094. DOI: 10.1002/asia.202100978.
  • Guo, X.; Shao, B.-R.; Jiang, W.-F.; Shi, L. The Photocatalyst-Free Cross-Dehydrogenative Coupling Reaction Enabled by Visible-Light Direct Excitation of Substrate. J. Org. Chem. 2021, 86, 15743–15752. DOI: 10.1021/acs.joc.1c01775.
  • Zhu, S.-S.; Zuo, L.; Liu, Y.; Yu, B. 1,2,3,5-Tetrakis(Carbazol-9-yl)-4,6-Dicyanobenzene (4CzIPN)-Based Porous Organic Polymers for Visible-Light-Driven Organic Transformations in Water under Aerobic Oxidation. Green Chem. 2022, 24, 8725–8732. DOI: 10.1039/D2GC02950B.
  • Zhu, S.-S.; Liu, Y.; Chen, X.-L.; Qu, L.-B.; Yu, B. Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp3)–H Bonds. ACS Catal. 2022, 12, 126–134. DOI: 10.1021/acscatal.1c03765.
  • Quint, V.; Chouchène, N.; Askri, M.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. Visible-Light-Mediated α-Phosphorylation of N-Aryl Tertiary Amines through the Formation of Electron-Donor-Acceptor Complexes: Synthetic and Mechanistic Studies. Org. Chem. Front. 2019, 6, 41–44. DOI: 10.1039/C8QO00985F.
  • Shao, A.; Chen, J.; Wang, L.; Yi, M.; Yang, H.; Zhang, Y.; Fan, S.; Chen, S.; Wu, H.; Shi, R. Excited-State Cobaloxime Catalysis Enabled Scalable Oxidant-Free Dehydrogenative C–H Phosphinoylation of Undirected Heterocycles. Org. Chem. Front. 2022, 9, 4379–4387. DOI: 10.1039/D2QO00662F.
  • Liu, Y.; Tianyi, S.; Zhu, S.; Zuo, L.; Yu, B. Preparation Method and Application of 4CzIPN Type Porous Organic Polymer. Chin. Patent 115057996 Sep 16, 2022.
  • Rao, B.; Wang, J.; He, B.; Li, Z.; He, G. Bridged Bis-Benzimidazole Salt and Preparation Method and Application Thereof. Chin. Patent 114573514, Jun 3, 2022.
  • Feng, K.; Ci, R.; Wu, L.; Tong, Z.; Zhao, L.; Huang, C. Method for Constructing C-P Bond Using Amine Compound and Phosphorous Oxide Compound. Chin. Patent 115385958 Nov 25, 2022.
  • Ma, W.; Zhang, S.; Xu, L.; Zhang, B.; Li, G.; Rao, B.; Zhang, M.; He, G. Pyrene-Tethered Bismoviologens for Visible Light-Induced C(sp3)–P and C(sp2)–P Bonds Formation. Chin. Chem. Lett. 2023, 34, 107958. DOI: 10.1016/j.cclet.2022.107958.
  • Wang, J.-H.; Li, X.-B.; Li, J.; Lei, T.; Wu, H.-L.; Nan, X.-L.; Tung, C.-H.; Wu, L.-Z. Photoelectrochemical Cell for P–H/C–H Cross-Coupling with Hydrogen Evolution. Chem. Commun. (Camb.) 2019, 55, 10376–10379. DOI: 10.1039/C9CC05375A.
  • Ci, R.-N.; Huang, C.; Zhao, L.-M.; Qiao, J.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. General and Efficient C–P Bond Formation by Quantum Dots and Visible Light. CCS Chem. 2022, 4, 2946–2952. DOI: 10.31635/ccschem.021.202101615.
  • Yi, M.-J.; Xiao, T.-F.; Li, W.-H.; Zhang, Y.-F.; Yan, P.-J.; Zhang, B.; Xu, P.-F.; Xu, G.-Q. Organic Photoredox Catalytic α-C(sp3)–H Phosphorylation of Saturated Aza-Heterocycles. Chem. Commun. (Camb.) 2021, 57, 13158–13161. DOI: 10.1039/D1CC05767G.
  • Xu, G.; Xiao, T. Quinoxaline Framework Based Organic Photocatalyst and Preparation Method and Application Thereof. Chin. Patent 114907328 Aug 16, 2022.
  • Wang, J.; Li, J.; Wei, Y.; Yang, J.; Huo, C. Copper-Catalyzed Oxidative Phosphonation of 3,4-Dihydro-1,4-Benzoxazin-2-Ones. Org. Chem. Front. 2018, 5, 3534–3537. DOI: 10.1039/C8QO01049H.
  • Huo, C.; Wang, J. Synthetic Method for Phosphorous-Containing Benzoxazinone Compound. Chin. Patent 108484670, Sep 4, 2018.
  • Ung, S. P.-M.; Perepichka, I.; Li, C.-J. Visible-Light Mediated Photooxidative Phosphorylation of Benzylamines: A Novel and Mild Pathway towards α-Aminophosphorus Compounds. Helv. Chim. Acta 2022, 105, E202100190. DOI: 10.1002/hlca.202100190.
  • Ung, S. P.-M. Towards the Development of Novel C–P(V) Phosphorylation Methods. PhD Dissertation, McGill University, Montreal, Canada, 2021.
  • Jiang, C.; Sha, X.; Wang, S.; Lu, H. Method for Synthesizing Glycine Phosphorus-Containing Derivative. Chin. Patent 113861239, Dec 31, 2021.
  • Yang, B.; Yang, T.-T.; Li, X.-A.; Wang, J.-J.; Yang, S.-D. A Mild, Selective Copper-Catalyzed Oxidative Phosphonation of α-Amino Ketones. Org. Lett. 2013, 15, 5024–5027. DOI: 10.1021/ol402355a.
  • Wang, R.; Wang, J.; Zhang, Y.; Wang, B.; Xia, Y.; Xue, F.; Jin, W.; Liu, C. Electrochemical Oxidative Phosphorylations of Glycine Derivatives with R2P(O)−H-Containing Compounds via C(sp3)−H Functionalisation. Adv. Synth. Catal. 2023, 365, 900–905. DOI: 10.1002/adsc.202201198.
  • Zhao, Y.; Chen, X.; Chen, T.; Zhou, Y.; Yin, S.-F.; Han, L.-B. Catalyst-Free and Selective C − N Bond Functionalization: Stereospecific Three-Component Coupling of Amines, Dichloromethane, and > P(O)H Species Affording α-Aminophosphorus Compounds. J. Org. Chem. 2015, 80, 62–69. DOI: 10.1021/jo501961h.
  • Shuangfeng, Y.; Yongbo, Z.; Xiuling, C.; Yalei, Z. Synthesis Method of α-Amino Alkylphosphine. Chin. Patent 104031088, Sep 10, 2014.
  • Gao, Y.; Huang, Z.; Zhuang, R.; Xu, J.; Zhang, P.; Tang, G.; Zhao, Y. Direct Transformation of Amides into α-Amino Phosphonates via a Reductive Phosphination Process. Org. Lett. 2013, 15, 4214–4217. DOI: 10.1021/ol4019419.
  • Yan, P.; Hashimoto, Y. A Novel Reductive Coupling Reaction between Diphenylphosphine Sulfide and Formamides. Tetrahedron Lett. 2006, 47, 3467–3469. DOI: 10.1016/j.tetlet.2006.03.073.
  • Morgalyuk, V. P.; Petrovskii, P. V.; Lyssenko, K. A.; Nifant′ev, E. E. Synthesis of Polyfunctional Methylphosphine Oxides. Russ. Chem. Bull. 2009, 58, 248–250. DOI: 10.1007/s11172-009-0039-x.
  • Morgalyuk, V. P.; Strelkova, T. V. A Scheme of the Stepwise Reaction of Diphenylchlorophosphine with N,N-Dialkylformamides in the Presence of NaI. Russ. J. Gen. Chem. 2011, 81, 2096–2101. DOI: 10.1134/S1070363211100094.
  • Morgalyuk, V. P.; Strelkova, T. V.; Nifant’ev, E. E. Synthesis of Polyfunctional Methylphosphine Oxides. Russ. J. Gen. Chem. 2012, 82, 1171–1173. DOI: 10.1134/S1070363212060230.
  • Nifant’ev, E. E.; Morgaliuk, V. P.; Petrovskii, P. V.; Lyssenko, K. A. New Synthesis of Functionalized Tertiary Phosphines. Russ. Chem. Bull. 2007, 56, 2131–2132. DOI: 10.1007/s11172-007-0335-2.
  • Morgalyuk, V. P.; Petrovskii, P. V.; Lysenko, K. A.; Nifant’ev, E. E. Stoichiometry of the Reaction of Diphenylchlorophosphine with Dimethylformamide in the Presence of NaI. Russ. J. Gen. Chem. 2010, 80, 100–105. DOI: 10.1134/S1070363210010123.
  • Huang, W.-B.; Qiu, L.-Q.; Ren, F.-Y.; He, L.-N. Facile Synthesis of α-Aminophosphine Oxides from Diarylphosphine Oxides, Arynes and Formamides. Chem. Commun. (Camb.) 2021, 57, 9578–9581. DOI: 10.1039/D1CC04101K.
  • Yoshida, H.; Ito, Y.; Ohshita, J. Three-Component Coupling Using Arynes and DMF: Straightforward Access to Coumarins via Ortho-Quinone Methides. Chem. Commun. (Camb.) 2011, 47, 8512–8514. DOI: 10.1039/C1CC11955A.
  • Li, W.; Shi, R.; Zhang, X.; Chen, S.; Wang, Y.; Wang, M.; Yang, B.; Li, J.; Xu, X.-M. Different Lewis Acid Promotor-Steered Highly Regioselective Phosphorylation of Tertiary Enamides. J. Org. Chem. 2022, 87, 9769–9781. DOI: 10.1021/acs.joc.2c00829.
  • Zou, Y.-X.; Liu, X.-Y.; Zhang, J.; Yang, H.-L.; Yang, X.-Y.; Liu, X.-L.; Chu, Y.-W.; Chen, L. Synthesis of C2-Phosphorylated Indoles via Metal-Free 1,2-Phosphorylation of 3-Indolylmethanols with P(O)-H Species. Adv. Synth. Catal. 2019, 361, 5311–5316. DOI: 10.1002/adsc.201900987.
  • Rao, W.; An, D.; Sang, J.; Feng, L.; Hu, R. Method for Synthesizing Trifluoromethyl C-2 Phosphonyl Indole in Water Phase. Chin. Patent 112920220 Jun 8, 2021.
  • Chen, L.; Zou, Y.; Liu, X.; Lin, J. C2-Phosphonoindole Compound and Preparation Method Thereof. Chin. Patent 110256493 Sep 20, 2019.
  • An, D.; Sang, J.; Hu, R.; Chen, J.; Feng, L.; Rao, W. Synthesis of 2-Phosphoryl-3-Monofluorovinylindoles under Catalyst- and Additive-Free Conditions. Adv. Synth. Catal. 2021, 363, 3496–3501. DOI: 10.1002/adsc.202100331.
  • Rao, W.; An, D.; Sang, J.; Hu, R.; Chen, J.; Feng, L. 2-Phosphono-3-Fluoro-Vinylindole Compound and Preparation Method Thereof. Chin. Patent 112724171, Apr 30, 2021.
  • Pan, J.; Zhao, R.; Guo, J.; Ma, D.; Xia, Y.; Gao, Y.; Xu, P.; Zhao, Y. Three-Component 3-(Phosphoryl)Methylindole Synthesis from Indoles, H-Phosphine Oxides and Carbonyl Compounds under Metal-Free Conditions. Green Chem. 2019, 21, 792–797. DOI: 10.1039/C8GC03530J.
  • Huang, Q.; Zhu, L. Green Synthesis Method of α-Amino Phosphine Oxides. Chin. Patent 111892627, Nov 6, 2020.
  • Huang, Q.; Dong, K.; Bai, W.; Yi, D.; Ji, J.-X.; Wei, W. TEMPO-Catalyzed Aminophosphinoylation of Ethers via Tandem C(sp3)−H and C(sp3)−O Bond Cleavage. Org. Lett. 2019, 21, 3332–3336. DOI: 10.1021/acs.orglett.9b01081.
  • Wei, W.; Huang, Q.; Lv, Y.; Liu, Q. Preparation Method of α-Amino-Phosphine Oxide Compound. Chin. Patent 109942627, Jun 28, 2019.
  • Huang, Q.; Zhu, L.; Yi, D.; Zhao, X.; Wei, W. Silver-Mediated Aminophosphinoylation of Propargyl Alcohols with Aromatic Amines and H-Phosphine Oxides Leading to α-Aminophosphine Oxides. Chin. Chem. Lett. 2020, 31, 373–376. DOI: 10.1016/j.cclet.2019.07.049.
  • Banerjee, I.; Harinath, A.; Panda, T. K. Alkali Metal Catalysed Double Hydrophosphorylation of Nitriles and Alkynes. Eur. J. Inorg. Chem. 2019, 2019, 2224–2230. DOI: 10.1002/ejic.201900164.
  • Basiouny, M. M. I.; Schmidt, J. A. R. Lanthanum-Catalyzed Double Hydrophosphinylation of Nitriles. Organometallics 2017, 36, 721–729. DOI: 10.1021/acs.organomet.6b00919.
  • Basiouny, M. M. I. Lanthanum Catalyzed Hydrophosphination and Hydrophosphinylation. PhD Dissertation, The University of Toledo, Toledo, Ohio, U.S., 2018.
  • Härling, S. M.; Fener, B. E.; Krieck, S.; Görls, H.; Westerhausen, M. Potassium Dimesitylphosphinite Catalyzed Intermolecular Hydrophosphorylation of Alkynes. Organometallics 2018, 37, 4380–4386. DOI: 10.1021/acs.organomet.8b00368.
  • Guo, S.; Yan, W.; Zhang, Z.; Huang, Z.; Guo, Y.; Liang, Z.; Li, S.; Fu, Z.; Cai, H. Nickel-Catalyzed 1,1-Dihydrophosphinylation of Nitriles with Phosphine Oxides. J. Org. Chem. 2022, 87, 5522–5529. DOI: 10.1021/acs.joc.1c02815.
  • Teo, S.; Weng, Z.; Hor, T. S. A. Unusual Ligand Transformation Mediated by Chromium(III): Hydrolytic Disintegration of a [PNP] Hybrid Ligand with CH3CN Insertion. Organometallics 2008, 27, 4188–4192. DOI: 10.1021/om800353a.
  • Yuan, Q.; Liu, H.-W.; Cai, Z.-J.; Ji, S.-J. Direct 1,1-Bisphosphonation of Isocyanides: Atom- and Step-Economical Access to Bisphosphinoylaminomethanes. ACS Omega 2021, 6, 8495–8501. DOI: 10.1021/acsomega.1c00160.
  • Hirai, T.; Han, L.-B. Palladium-Catalyzed Insertion of Isocyanides into P(O)-H Bonds: Selective Formation of Phosphinoyl Imines and Bisphosphinoylaminomethanes. J. Am. Chem. Soc. 2006, 128, 7422–7423. DOI: 10.1021/ja060984d.
  • Pudovik, A. N.; Nikitina, V. I.; Zimin, M. G.; Vostretsova, N. M. Reactions of Partial Esters of Phosphorus Acids with Phenyl Isonitriles. Zh. Obshch. Khim. 1975, 45, 1450–1455.
  • Kan, L.-B.; Hirai, T. Preparation of Bis(Phosphinoyl)Aminomethanes. Jpn. Patent 2007-186426 Jul 26, 2007.
  • Wen, L.-R.; Sun, Y.-X.; Zhang, J.-W.; Guo, W.-S.; Li, M. Catalyst- and Solvent-Free Bisphosphinylation of Isothiocyanates: A Practical Method for the Synthesis of Bisphosphinoylaminomethanes. Green Chem. 2018, 20, 125–129. DOI: 10.1039/C7GC03101G.
  • Guo, W.; Sun, Y.; Wen, L.; Li, M. Preparation Method for Dioxy Phosphino Aminomethane Class Compound. Chin. Patent 107383096 Nov 24, 2017.
  • Hegarty, A. F.; Cronin, J. D.; Scott, F. L. Mechanism of Hydrolysis of Imidoyl Chlorides. J. Chem. Soc., Perkin Trans. 2 1975, 429–435. DOI: 10.1039/p29750000429.
  • Fodor, G.; Nagubandi, S. Correlation of the Von Braun, Ritter, Bischler-Napieralski, Beckmann and Schmidt Reactions via Nitrilium Salt Intermediates. Tetrahedron 1980, 36, 1279–1300. DOI: 10.1016/0040-4020(80)85039-3.
  • van Dijk, T.; Slootweg, J. C.; Lammertsma, K. Nitrilium Ions – Synthesis and Application. Org. Biomol. Chem. 2017, 15, 10134–10144. DOI: 10.1039/C7OB02533E.
  • Konotopova, S. P.; Chistokletov, V. N.; Petrov, A. A. Reactions of Phosphorus(III) Acid Esters with Nitrilimines. Zh. Obshch. Khim. 1978, 48, 2416–2423.
  • Mrowca, J. J. Phosphine Oxide-Substituted Pyrimidines. U.S. Patent 4,234,729, Nov 18, 1980.
  • Matrosov, E. I.; Starikova, Z. A.; Khodak, A. A.; Nifant’ev, E. E. Complexes of Cerium(III), Neodymium(III), and Samarium(III) Nitrates with 2,3-Bis(diphenylphosphino)Quinoxaline Dioxide and Triphenyl-N-(diphenylphosphoryl)Phosphinimine. Zh. Neorg. Khim. 2003, 48, 2008–2013.
  • Smirnova, E. V.; Artyushin, O. I.; Vologzhanina, A. V.; Turanov, A. N.; Karandashev, V. K.; Brel, V. K. Coordination and Extraction Properties of New Bis- and Tetrakis(Diphenylphosphoryl)-Substituted Pyrazines towards f-Block Elements. Mendeleev Commun. 2022, 32, 664–666. DOI: 10.1016/j.mencom.2022.09.032.
  • Onys’ko, P. P.; Rassukana, Y. V.; Sinitsa, O. A. Imidoyl Chlorides: New Promising Building Blocks in Synthesis of α-Aminophosphoryl Compounds. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 399–405. DOI: 10.1080/10426500701735338.
  • Onys’ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Sigmatropic Isomerizations in 2-Azaallyl Systems. XIII. Prototropic and Phosphorotropic Isomerizations in the Phosphorylation of N-Benzylpivalimidoyl Chloride. Zh. Obshch. Khim. 1995, 65, 1961–1971.
  • Onys’ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Sigmatropic Isomerizations in 2-Azaallyl Systems. XIV. Prototropic and Phosphorotropic Rearrangements in the Phosphorylation of N-Benzylthien- and N-Benzylfuryl-Imidoyl Chlorides. Zh. Obshch. Khim. 1996, 66, 936–941.
  • Onys’ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Prokopenko, V. P.; Sinitsa, A. D. Sigmatropic Isomerizations in 2-Azaallyl Systems. XV. Peculiarities of N-Benzylarylcarboximidoyl Chloride Reaction with Ethyl Diphenylphosphinite. Zh. Obshch. Khim. 1996, 66, 1283–1286.
  • Gross, H.; Costisella, B.; Brennecke, L. Über α-Substituierte Phosphonate XV. Eine C-N-Umlagerung von Phosphorylgruppen. Phosphorus Relat. Group V Elem. 1974, 4, 241–246.
  • Onys’ko, P. P. Nucleophilic Phosphorylation of N-(Methoxycarbonyl)Trifluoroacetimidoyl Chloride. Zh. Obshch. Khim. 1999, 69, 158–159.
  • Rassukana, Y. V.; Sinitsa, A. A.; Onys’ko, P. P. Novel C-Phosphorylated Heterodienes Based on Pentachloroethyl Isocyanate. Russ. Chem. Bull. 2005, 54, 2648–2651. DOI: 10.1007/s11172-006-0170-x.
  • Namestnikov, V. I.; Tamm, L.; Chistokletov, V. N. Reaction of Ethyl Diphenylthiophosphinite with Nitrilimines. Zh. Obshch. Khim. 1985, 55, 710–711.
  • Pandey, M. K.; Kote, B. S.; Mondal, D.; Kunchur, H. S.; Radhakrishna, L.; Balakrishna, M. S. Transition Metal Complexes of 2,6-Dibenzhydryl Derived Bisphosphine: Synthesis, Structural Studies and Palladium Complex Promoted Suzuki-Miyaura Reactions. ChemistrySelect 2022, 7, E202201245. DOI: 10.1002/slct.202201245.
  • Sukhikh, T. S.; Kolybalov, D. S.; Khisamov, R. M.; Konchenko, S. N. Phenyl-2-benzothiazole-Based α-Aminophosphines: Synthesis, Crystal Structure, and Photophysical Properties. J. Struct. Chem. 2022, 63, 1446–1452. DOI: 10.1134/S0022476622090074.
  • Mondal, D.; Sardar, G.; Kabra, D.; Balakrishna, M. S. 2,2′-Bipyridine Derived Doubly B ← N Fused Bisphosphine-Chalcogenides, [C5H3N(BF2){NCH2P(E)Ph2}]2 (E = O, S, Se): Tuning of Structural Features and Photophysical Studies. Dalton Trans. 2022, 51, 6884–6898. DOI: 10.1039/d2dt00287f.
  • Takahashi, K.; Sakurazawa, Y.; Iwai, A.; Iwasawa, N. Catalytic Synthesis of a Methylmalonate Salt from Ethylene and Carbon Dioxide through Photoinduced Activation and Photoredox-Catalyzed Reduction of Nickelalactones. ACS Catal. 2022, 12, 3776–3781. DOI: 10.1021/acscatal.2c01053.
  • He, F.; Gourlaouen, C.; Pang, H.; Braunstein, P. Experimental and Theoretical Study of NiII- and PdII-Promoted Double Geminal C(sp3)-H Bond Activation Providing Facile Access to NHC Pincer Complexes: Isolated Intermediates and Mechanism. Chemistry 2022, 28, e202200507. DOI: 10.1002/chem.202200507.
  • Rangarajan, Shalini, Kunchur, Harish S, Balakrishna, Maravanji S, Siddhartha, A Greener Approach towards the Synthesis of N-Heterocyclic Thiones and Selones Using the Mechanochemical Technique. Dalton Trans. 2022, 51, 15750–15761. DOI: 10.1039/d2dt02322a.
  • Gazizov, M. B.; Ismagilov, R. K.; Ivanova, S. Y.; Karimova, R. F.; Pistsova, A. L.; Khairullin, R. A.; Gazizova, N. N.; Shaikhutdinova, L. R.; Gubaidullin, A. T.; Gnezdilov, O. I. First Representative of Phosphorylated Formic Acid Hydrazides with Three P-C Bonds: Synthesis and Addition to the Phosphorylated 4-Methylenequinones. Russ. Chem. Bull. 2022, 71, 457–463. DOI: 10.1007/s11172-022-3433-2.
  • de los Santos, J. M.; Rubiales, G.; Sbai, Z. E.; Carramiñana, V.; Ochoa de Retana, A. M.; Palacios, F. Reaction of Phosphinyl Nitrosoalkenes with Electron-Rich Heterocycles. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 545–549. DOI: 10.1080/10426507.2018.1542400.
  • Takata, T.; Nishikawa, D.; Hirano, K.; Miura, M. Synthesis of α-Aminophosphines by Copper-Catalyzed Regioselective Hydroamination of Vinylphosphines. Chemistry 2018, 24, 10975–10978. DOI: 10.1002/chem.201802491.
  • Kabachnik, M. I.; Medved’, T. Y.; Polikarpov, Y. M. Oxides of β-Amino-Substituted Vinylphosphines. Russ. Chem. Bull. 1966, 15, 342–343. DOI: 10.1007/BF00856076.
  • Hetze, R. H.; Gais, H.-J.; Raabe, G. Synthesis of Chiral α-(N-Sulfoximido) Phosphines, Phosphine Oxides, and Phosphonates through Hydrophosphination and Hydrophosphorylation of N-Vinyl Sulfoximines. Synthesis 2008, 2008, 1126–1132. DOI: 10.1055/s-2008-1066992.
  • Dziwok, K.; Lachmann, J.; Wilkinson, D. L.; Müller, G.; Schmidbaur, H. 1,1′-Bis(Diphenylphosphino)Bicyclopropyl: Synthesis, Properties, Precursors, Derivatives, and Metal Complexes. Chem. Ber. 1990, 123, 423–431. DOI: 10.1002/cber.19901230303.
  • Minami, T.; Hanamoto, T.; Hirao, I. Synthesis of Heterocyclic Compounds Containing Phosphorus Residues by Cycloaddition of 1,3-Dipoles to Cyclobutenylphosphorus Compounds. J. Org. Chem. 1985, 50, 1278–1281. DOI: 10.1021/jo00208a024.
  • Heydt, H.; Busch, K.-H.; Regitz, M. Untersuchungen an Diazoverbindungen und Aziden, XXXVI. [3 + 2]-Cycloaddition von Diazoalkanen an 1-Cyclopropenyl-phosphinoxide; Isomerisierung der Cycloaddukte. Liebigs Ann. Chem. 1980, 1980, 590–599. DOI: 10.1002/jlac.198019800411.
  • de Juan, A.; Lozano, D.; Heard, A. W.; Jinks, M. A.; Suarez, J. M.; Tizzard, G. J.; Goldup, S. M. A Chiral Interlocking Auxiliary Strategy for the Synthesis of Mechanically Planar Chiral Rotaxanes. Nat. Chem. 2022, 14, 179–187. DOI: 10.1038/s41557-021-00825-9.
  • Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. High Yielding Synthesis of 2,2′-Bipyridine Macrocycles, Versatile Intermediates in the Synthesis of Rotaxanes. Chem. Sci. 2016, 7, 3154–3161. DOI: 10.1039/C6SC00011H.
  • Galli, M.; Lewis, J. E. M.; Goldup, S. M. A Stimuli-Responsive Rotaxane–Gold Catalyst: Regulation of Activity and Diastereoselectivity. Angew. Chem. Int. Ed. Engl. 2015, 54, 13545–13549. DOI: 10.1002/anie.201505464.
  • Carramiñana, V.; Ochoa de Retana, A. M.; Palacios, F.; de los Santos, J. M. Synthesis of α-Aminophosphonic Acid Derivatives through the Addition of O- and S-Nucleophiles to 2H-Azirines and Their Antiproliferative Effect on A549 Human Lung Adenocarcinoma Cells. Molecules 2020, 25, 3332. DOI: 10.3390/molecules25153332.
  • Carramiñana, V.; Ochoa de Retana, A. M.; de los Santos, J. M.; Palacios, F. First Synthesis of Merged Hybrids Phosphorylated Azirino[2,1-b]Benzo[e][1,3]Oxazine Derivatives as Anticancer Agents. Eur. J. Med. Chem. 2020, 185, 111771. DOI: 10.1016/j.ejmech.2019.111771.
  • Carramiñana, V.; Ochoa de Retana, A. M.; del Burgo, A. V.; de los Santos, J. M.; Palacios, F. Synthesis and Biological Evaluation of Cyanoaziridine Phosphine Oxides and Phosphonates with Antiproliferative Activity. Eur. J. Med. Chem. 2019, 163, 736–746. DOI: 10.1016/j.ejmech.2018.12.002.
  • Gazizov, M. B.; Tarakanova, A. L.; Ismagilov, R. K.; Shamsutdinova, L. P.; Karimova, R. F.; Burangulova, R. N. Addition of Phthalimide and Acetone to Phosphorylated Methylene Quinones. Russ. J. Gen. Chem. 2016, 86, 326–330. DOI: 10.1134/S1070363216020213.
  • Jovic, F.; Louise, L.; Mioskowski, C.; Renard, P.-Y. Immunologically Driven Antibodies Chemical Engineering: Design and Synthesis of a Hapten Aimed at Nerve Agent Hydrolysis. Tetrahedron Lett. 2005, 46, 6809–6814. DOI: 10.1016/j.tetlet.2005.08.032.
  • Sun, S.; Wei, Y.; Xu, J. Visible-Light-Induced [1 + 5] Annulation of Phosphoryl Diazomethylarenes and Pyridinium 1,4-Zwitterionic Thiolates. Org. Lett. 2022, 24, 6024–6030. DOI: 10.1021/acs.orglett.2c02321.
  • Aleksanyan, D. V.; Churusova, S. G.; Brunova, V. V.; Rybalkina, E. Y.; Susova, O. Y.; Peregudov, A. S.; Klemenkova, Z. S.; Denisov, G. L.; Kozlov, V. A. Synthesis, Characterization, and Cytotoxic Activity of N-Metallated Rhenium(I) Pincer Complexes with (Thio)Phosphoryl Pendant Arms. J. Organomet. Chem. 2020, 926, 121498. DOI: 10.1016/j.jorganchem.2020.121498.
  • Sukhikh, T. S.; Khisamov, R. M.; Konchenko, S. N. Synthesis, Crystal Packing Aspects and Pseudosymmetry in Coordination Compounds with a Phosphorylamide Ligand. Symmetry 2023, 15, 157. DOI: 10.3390/sym15010157.
  • Kukkonen, E.; Virtanen, E. J.; Moilanen, J. O. α-Aminophosphonates, -Phosphinates, and -Phosphine Oxides as Extraction and Precipitation Agents for Rare Earth Metals, Thorium, and Uranium: A Review. Molecules 2022, 27, 3465. DOI: 10.3390/molecules27113465.
  • Turanov, A. N.; Karandashev, V. K.; Khvostikov, V. A.; Tcarkova, K. V.; Sharova, E. V.; Artyushin, O. I.; Bondarenko, N. A. Extraction of REE(III), U(VI), and Th(IV) with Modified Carbamoylmethylphosphine Oxides from Nitric Acid Solutions. Russ. J. Gen. Chem. 2022, 92, 1049–1055. DOI: 10.1134/S1070363222060160.
  • Huang, M.; Fu, Y.; Lu, Y.; Liao, W.; Li, Z. A Novel Extractant Bis(2-Ethylhexyl) ((2-Ethylhexylamino)Methyl)Phosphine Oxide for Cerium(IV) Extraction and Separation from Sulfate Medium. J. Rare Earths 2020, 38, 1330–1336. DOI: 10.1016/j.jre.2019.12.009.
  • Cherkasov, R. A.; Garifzjanov, A. R.; Davletshin, R. R. Synthesis of New α-Bisaminophosphinoxides. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 785–786. DOI: 10.1080/10426507.2010.517585.
  • Nikolaev, A. V.; Blishchenko, N. S.; Mironova, Z. N.; Dyadin, Y. A.; Yakovlev, I. I. Ionization Constants of Some Aminomethylphosphine Oxide. Zh. Fiz. Khim. 1970, 44, 2412–2412.
  • Marinozzi, M.; Pertusati, F.; Serpi, M. λ5-Phosphorus-Containing α-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules. Chem. Rev. 2016, 116, 13991–14055. DOI: 10.1021/acs.chemrev.6b00373.
  • Kreutzkamp, N.; Lämmerhirt, K. Phosphinylmethyl Isocyanides. Angew. Chem. Int. Ed. Engl. 1968, 7, 372–373. DOI: 10.1002/anie.196803721.
  • Sueishi, Y.; Miyazono, K.; Kozai, K. Effects of Substituent and External Pressure on Spin Trapping Rates of Carbon Dioxide Anion, Sulfur Trioxide Anion, Hydroxyl, and Ethyl Radicals with Various PBN- and DMPO-Type Spin Traps. Z. Phys. Chem. 2014, 228, 927–938. DOI: 10.1515/zpch-2014-0538.
  • Nakajima, A.; Matsuda, E.; Masuda, Y.; Sameshima, H.; Ikenoue, T. Characteristics of the Spin-Trapping Reaction of a Free Radical Derived from AAPH: Further Development of the ORAC-ESR Assay. Anal. Bioanal. Chem. 2012, 403, 1961–1970. DOI: 10.1007/s00216-012-6021-8.
  • Li, Y.; Wu, X.-J.; Wang, C.; Sun, J. Preparation of Chiral Aminophosphinyl Oxides and Their Application in Asymmetric Reduction of N-Substituted Acetophenone Ketimine. Hecheng Huaxue 2012, 20, 497–500.
  • Nguyen, H. V.; Sallustrau, A.; Male, L.; Thornton, P. J.; Tucker, J. H. R. 1,1’-Homodisubstituted Ferrocenes Containing Adenine and Thymine Nucleobases: Synthesis, Electrochemistry, and Formation of H-Bonded Arrays. Organometallics 2011, 30, 5284–5290. DOI: 10.1021/om200671b.
  • Shen, W.; Zhang, A.; Fan, J.; Zheng, X. Phosphorus Containing Quinazoline Compounds and Methods of Use. World Patent 2011/002523, Jan 6, 2011.
  • Kafarski, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215. DOI: 10.1080/10426509108029443.
  • Maier, L.; Diel, P. J. Synthesis, Physical and Biological Properties of the Phosphorus Analogues of Phenylalanine and Related Compounds. Phosphorus Sulfur Silicon Relat. Elem. 1994, 90, 259–279. DOI: 10.1080/10426509408016410.
  • Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity. Wiley: Chichester, 2000.
  • Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. Curr. Med. Chem. Anticancer Agents 2001, 1, 301–312. DOI: 10.2174/1568011013354543.
  • Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f.
  • Mucha, A. Synthesis and Modifications of Phosphinic Dipeptide Analogues. Molecules 2012, 17, 13530–13568. DOI: 10.3390/molecules171113530.
  • Visa, A.; Maranescu, B.; Ilia, G. Hypophosphorous Acid and Its Salts as Reagents in Organophosphorus Chemistry. In Chemistry beyond Chlorine; Tundo, P., He, L.-N., Lokteva, E., Mota, C., Eds.; Springer: Cham, 2016, pp. 137–168. DOI: 10.1007/978-3-319-30073-3_4.
  • Zhang, D.; Peng, J.; Greco, M. N.; Costanzo, M. J.; Green, M. A. Organophosphorus-Substituted Compounds as C-Met Inhibitors and Therapeutic Uses Thereof. World Patent 2020/124060, Jun 18, 2020.
  • Dimitrova, M.; Dragolova, D.; Kapchina-Toteva, V.; Zagraniarsky, J.; Tsholakova, T. Herbicide and Tobacco Callus Growth Regulated Activity of New Sintesyzed Substances. Biotechnol. Biotechnol. Equip. 2009, 23, 323–325. DOI: 10.1080/13102818.2009.10818429.
  • Stanoeva, E.; Varbanov, S.; Alexieva, V.; Sergiev, I.; Vasileva, V.; Rashkova, M.; Georgieva, A. Synthesis and Plant Growth Regulating Activity of New Triazolo- and Pyrazolopyrimidine Derivatives of Aminomethyl, Aminoalkyloxymethyl Dimethylphosphine Oxides and (Aminomethane)Phosphonic Acid Esters. Phosphorus Sulfur Silicon Relat. Elem. 2000, 165, 117–133. DOI: 10.1080/10426500008076331.
  • Komarnicka, U. K.; Starosta, R.; Kyzioł, A.; Płotek, M.; Puchalska, M.; Jeżowska-Bojczuk, M. New Copper(I) Complexes Bearing Lomefloxacin Motif: Spectroscopic Properties, in Vitro Cytotoxicity and Interactions with DNA and Human Serum Albumin. J. Inorg. Biochem. 2016, 165, 25–35. DOI: 10.1016/j.jinorgbio.2016.09.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.