100
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communications

Metal–organic frameworks HKUST-1 embedded in amino-functionalized SBA-15: Efficient catalytic reduction of 4-nitrophenol to 4-aminophenol

, , , , ORCID Icon &
Pages 149-156 | Received 17 Mar 2023, Accepted 10 Oct 2023, Published online: 23 Oct 2023

References

  • Jia, W.; Tian, F.; Zhang, M.; Li, X.; Ye, S.; Ma, Y.; Wang, W.; Zhang, Y.; Meng, C.; Zeng, G.; Liu, J. Nitrogen-Doped Porous Carbon-Encapsulated Copper Composite for Efficient Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 2021, 594, 254–264. DOI: 10.1016/j.jcis.2021.03.020.
  • Xiao, W.-D.; Xiao, L.-P.; Xiao, W.-Z.; Wang, Q.; Zhai, S.-R.; Sun, R.-C. The New Identity of Cellulose Pulp: A Green Silver Nanoparticles Support for Highly Efficient Catalytic Hydrogenation of 4-Nitrophenol. J. Clean. Prod. 2022, 355, 131833–131843. DOI: 10.1016/j.jclepro.2022.131833.
  • Xiao, W.-Z.; Xiao, L.-P.; Yang, Y.-Q.; Xu, Q.; He, W.-Q.; Zhang, J.; Wang, R.-Y.; Zhao, X.; Zhai, S.-R.; Sun, R.-C. Fully Exposed Silver Nanoparticles Stabilized on pH-Responsive Lignin-Reactors for Enhanced 4-Nitrophenol Reduction. J. Environ. Chem. Eng. 2022, 10, 107945–107981. DOI: 10.1016/j.jece.2022.107945.
  • Kou, J.; Sun, L. B. Fabrication of Metal-Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity. ACS Appl. Mater. Interfaces 2018, 10, 12051–12059. DOI: 10.1021/acsami.8b01652.
  • Zhong, M.; Kong, L.; Li, N.; Liu, Y.-Y.; Zhu, J.; Bu, X.-H. Synthesis of MOF-Derived Nanostructures and Their Applications as Anodes in Lithium and Sodium Ion Batteries. Coord. Chem. Rev. 2019, 388, 172–201. DOI: 10.1016/j.ccr.2019.02.029.
  • Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48, 2783–2828. DOI: 10.1039/c8cs00829a.
  • Mahdi Ebrahimi, F.; Negar Madadian, B.; Atefeh, E.; Hassan, A.; Zhijie, C.; Sadegh, R.; Bing-Jie, N. Green Valorization of PET Waste into Functionalized Cu-MOF Tailored to Catalytic Reduction of 4-Nitrophenol. J. Environ. Manage. 2023, 345, 118842–118854. DOI: 10.1016/j.jenvman.2023.118842.
  • Senthil Kumar, R.; Senthil Kumar, S.; Anbu Kulandainathan, M. Efficient Electrosynthesis of Highly Active Cu3(BTC)2-MOF and Its Catalytic Application to Chemical Reduction. Microporous Mesoporous Mater. 2013, 168, 57–64. DOI: 10.1016/j.micromeso.2012.09.028.
  • Duan, J.; Jin, W.; Kitagawa, S. Water-Resistant Porous Coordination Polymers for Gas Separation. Coord. Chem. Rev. 2017, 332, 48–74. DOI: 10.1016/j.ccr.2016.11.004.
  • Burtch, N. C.; Jasuja, H.; Walton, K. S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. DOI: 10.1021/cr5002589.
  • Li, Z.; Zeng, H. C. Armored MOFs: Enforcing Soft Microporous MOF Nanocrystals with Hard Mesoporous Silica. J. Am. Chem. Soc. 2014, 136, 5631–5639. DOI: 10.1021/ja409675j.
  • Darren, B.; Ashesh, G.; Jia, H. Metal-Organic Framework Growth at Functional Interfaces: Thin Films and Composites for Diverse Applications. Chem. Soc. Rev. 2012, 41, 2344–2381.
  • Li, L.; Liu, X. L.; Gao, M.; Hong, W.; Liu, G. Z.; Fan, L.; Hu, B.; Xia, Q. H.; Liu, L.; Song, G. W.; Xu, Z. S. The Adsorption on Magnetic Hybrid Fe3O4/HKUST-1/GO of Methylene Blue from Water Solution. J. Mater. Chem. A 2014, 2, 1795–1801. DOI: 10.1039/C3TA14225F.
  • Liu, Y.; Zhang, W.; Li, S.; Cui, C.; Wu, J.; Chen, H.; Huo, F. Designable Yolk–Shell Nanoparticle@MOF Petalous Heterostructures. Chem. Mater. 2014, 26, 1119–1125. DOI: 10.1021/cm4034319.
  • Sasidharan, M.; Mal, N. K.; Bhaumik, A. In-Situ Polymerization of Grafted Aniline in the Channels of Mesoporous Silica SBA-15. J. Mater. Chem. 2007, 17, 278–283. DOI: 10.1039/B610392H.
  • Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@Mesoporous SBA-15: A Robust and Magnetically Recoverable Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones via the Biginelli Reaction. Dalton Trans. 2012, 41, 6173–6181. DOI: 10.1039/c2dt30106g.
  • Roy, S.; Chatterjee, T.; Pramanik, M.; Roy, A. S.; Bhaumik, A.; Islam, S. M. Cu(II)-Anchored Functionalized Mesoporous SBA-15: An Efficient and Recyclable Catalyst for the One-Pot Click Reaction in Water. J. Mol. Catal. A: Chem. 2014, 386, 78–85. DOI: 10.1016/j.molcata.2014.01.027.
  • Zhang, Y.; Qian, C.; Shi, R.; Li, S.; Shi, F.; Hu, J.; Khan, S.; Yang, X. In-Situ Synthesis of Metal-Organic Framework Embedded in Ordered Mesoporous Silica Functionalized with Carboxyl Groups for 4-Nitrophenol to 4-Aminophenol. Appl. Surf. Sci. 2022, 597, 153720–153758. DOI: 10.1016/j.apsusc.2022.153720.
  • Zhang, Y.; Qian, C.; Duan, J.; Liang, Y.; Luo, J.; Han, Y.; Hu, J.; Shi, F. Synthesis of HKUST-1 Embedded in SBA-15 Functionalized with Carboxyl Groups as a Catalyst for 4-Nitrophenol to 4-Aminophenol. Appl. Surf. Sci. 2022, 573, 151558–151564. DOI: 10.1016/j.apsusc.2021.151558.
  • Bodkhe, G. A.; Hedau, B. S.; Deshmukh, M. A.; Patil, H. K.; Shirsat, S. M.; Phase, D. M.; Pandey, K. K.; Shirsat, M. D. Detection of Pb(II): Au Nanoparticle Incorporated CuBTC MOFs. Front. Chem. 2020, 8, 803–813. DOI: 10.3389/fchem.2020.00803.
  • Yu, Z.; Zhang, L.; Han, Y.; Li, S.; Hu, J.; Shi, F. Thick Pore Wall and Strong Stability of Mesoporous Silica Supported HPW Materials: Highly Efficient Catalysts for Cellulose Hydrolysis Reaction. Mater. Lett. 2021, 282, 128841–128844. DOI: 10.1016/j.matlet.2020.128841.
  • Shi, R.-H.; Zhang, Z.-R.; Fan, H.-L.; Zhen, T.; Shangguan, J.; Mi, J. Cu-Based Metal–Organic Framework/Activated Carbon Composites for Sulfur Compounds Removal. Appl. Surf. Sci. 2017, 394, 394–402. DOI: 10.1016/j.apsusc.2016.10.071.
  • Chakraborty, A.; Maji, T. K. Mg-MOF-74@SBA-15 Hybrids: Synthesis, Characterization, and Adsorption Properties. APL Mater. 2014, 2, 124107–124113.
  • Chen, L.-F.; Guo, P.-J.; Zhu, L.-J.; Qiao, M.-H.; Shen, W.; Xu, H.-L.; Fan, K.-N. Preparation of Cu/SBA-15 Catalysts by Different Methods for the Hydrogenolysis of Dimethyl Maleate to 1,4-Butanediol. Appl. Catal. A 2009, 356, 129–136. DOI: 10.1016/j.apcata.2008.12.029.
  • Guo, T.; Qiu, M.; Qi, X. Selective Conversion of Biomass-Derived Levulinic Acid to Ethyl Levulinate Catalyzed by Metal Organic Framework (MOF)-Supported Polyoxometalates. Appl. Catal. A 2019, 572, 168–175. DOI: 10.1016/j.apcata.2019.01.004.
  • Chen, C.; Wang, H.; Chen, Y.; Wei, X.; Zou, W.; Wan, H.; Dong, L.; Guan, G. Layer-by-Layer Self-Assembly of Hierarchical Flower-like HKUST-1-Based Composite Over Amino-Tethered SBA-15 with Synergistic Enhancement for CO2 Capture. Chem. Eng. J. 2021, 413, 127396–127405. DOI: 10.1016/j.cej.2020.127396.
  • Alaerts, L.; Seguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Probing the Lewis Acidity and Catalytic Activity of the Metal-Organic Framework [Cu3(Btc)2] (BTC = Benzene-1,3,5-Tricarboxylate). Chemistry 2006, 12, 7353–7363. DOI: 10.1002/chem.200600220.
  • Lin, J.-Y.; Chen, P.-Y.; Kwon, E.; Oh, W. D.; You, S.; Huang, C.-W.; Ghanbari, F.; Wi-Afedzi, T.; Lin, K.-Y. A. One-Step Synthesized 3D-Structured MOF Foam for Efficient and Convenient Catalytic Reduction of Nitrogen-Containing Aromatic Compounds. J. Water Process. Eng. 2021, 40, 101933–101942. DOI: 10.1016/j.jwpe.2021.101933.
  • Zhi, L.; Liu, H.; Xu, Y.; Hu, D.; Yao, X.; Liu, J. Pyrolysis of Metal–Organic Framework (CuBTC) Decorated Filter Paper as a Low-Cost and Highly Active Catalyst for the Reduction of 4-Nitrophenol. Dalton Trans. 2018, 47, 15458–15464. DOI: 10.1039/c8dt03327g.
  • Duan, C.; Liu, C.; Meng, X.; Lu, W.; Ni, Y. Fabrication of Carboxymethylated Cellulose Fibers Supporting Ag NPs@MOF‐199s Nanocatalysts for Catalytic Reduction of 4‐Nitrophenol. Appl. Organomet. Chem. 2019, 33, 4865–4875.
  • Liu, J.; Yu, H.; Wang, L. Effective Reduction of 4-Nitrophenol with Au NPs Loaded Ultrathin Two Dimensional Metal-Organic Framework Nanosheets. Appl. Catal. A 2020, 599, 117605–117613. DOI: 10.1016/j.apcata.2020.117605.
  • Chen, C.; Li, B.; Zhou, L.; Xia, Z.; Feng, N.; Ding, J.; Wang, L.; Wan, H.; Guan, G. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 23060–23071. DOI: 10.1021/acsami.7b08117.
  • Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. DOI: 10.1126/science.279.5350.548.
  • Chen, S.-Y.; Huang, C.-Y.; Yokoi, T.; Tang, C.-Y.; Huang, S.-J.; Lee, J.-J.; Chan, J. C. C.; Tatsumi, T.; Cheng, S. Synthesis and Catalytic Activity of Amino-Functionalized SBA-15 Materials with Controllable Channel Lengths and Amino Loadings. J. Mater. Chem. 2012, 22, 2233–2243. DOI: 10.1039/C2JM14393C.
  • Yang, H.; Li, J.; Zhang, H.; Lv, Y.; Gao, S. Facile Synthesis of POM@MOF Embedded in SBA-15 as a Steady Catalyst for the Hydroxylation of Benzene. Microporous Mesoporous Mater. 2014, 195, 87–91. DOI: 10.1016/j.micromeso.2014.04.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.