45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, structural characterization of phenoxo-bridged zinc(II) complexes and their binding interaction with the spike protein of SARS-CoV-2

, , , , , , , , , , ORCID Icon & show all
Received 02 Jan 2024, Accepted 05 May 2024, Published online: 22 May 2024

References

  • Rappoport, Z.; Liebman, J. F.; Marek, I.; Patai, S. eds., The Chemistry of Organic Selenium and Tellurium Compounds, Parts 1 and 2 Set; Wiley: Hoboken, NJ, 2013; Vol. 4. https://www.wiley.com/en-us/The+Chemistry+of+Organic+Selenium+and+Tellurium+Compounds%2C+Volume+4%2C+Parts+1+and+2+Set-p-9781118336939.
  • Howes, P.; Green, M.; Johnston, C.; Crossley, A. Synthesis and Shape Control of Mercury Selenide (HgSe) Quantum Dots. J. Mater. Chem. 2008, 18, 3474–3480. DOI: 10.1039/b804158j.
  • Banerjee, B.; Verma, V. K. Advances in Chemiluminescence Based Explosive Detection. Indian J. Forensic Med. Pathol. 2021, 14, 611–616. DOI: 10.21088/ijfmp.0974.3383.14321.24.
  • Afzaal, M.; O'Brien, P. Recent Developments in II–VI and III–VI Semiconductors and Their Applications in Solar Cells. J. Mater. Chem. 2006, 16, 1597–1602. DOI: 10.1039/B512182E.
  • Burk, R. F. ed., Selenium in Biology and Human Health; Springer: Berlin, Germany, 1994. DOI: 10.1007/978-1-4612-2592-8.
  • Liu, M.; Liao, J.; Liu, Y.; Li, L.; Wen, R.; Hou, T.; Ji, R.; Wang, K.; Xing, Z.; Zheng, D.; et al. Periodical Ripening for MOCVD Growth of Large 2D Transition Metal Dichalcogenide Domains. Adv. Funct. Mater. 2023, 33, 2212773. DOI: 10.1002/adfm.202212773.
  • Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Molecular Paneling via Coordination. Chem. Commun. 2001, 509–518. DOI: 10.1039/b008684n.
  • Kuehl, C. J.; Kryschenko, Y. K.; Radhakrishnan, U.; Seidel, S. R.; Huang, S. D.; Stang, P. J. Self-Assembly of Nanoscopic Coordination Cages of D3h Symmetry. Proc. Natl. Acad. Sci. U S A 2002, 99, 4932–4936. DOI: 10.1073/PNAS.012540799.
  • Ding, Z.; Bux, S. K.; King, D. J.; Chang, F. L.; Chen, T. H.; Huang, S. C.; Kaner, R. B. Lithium Intercalation and Exfoliation of Layered Bismuth Selenide and Bismuth Telluride. J. Mater. Chem. 2009, 19, 2588–2592. DOI: 10.1039/b820226e.
  • Molter, A.; Mohr, F. Gold Complexes Containing Organoselenium and Organotellurium Ligands. Coord. Chem. Rev. 2010, 254, 19–45. DOI: 10.1016/j.ccr.2009.09.017.
  • Deligönül, N.; Tümer, M.; Serin, S. Synthesis, Characterization, Catalytic, Electrochemical and Thermal Properties of Tetradentate Schiff Base Complexes. Transition Met. Chem. 2006, 31, 920–929. DOI: 10.1007/S11243-006-0087-0/METRICS.
  • Pop, A.; Silvestru, C.; Silvestru, A. Organoselenium and Organotellurium Compounds Containing Chalcogen-Oxygen Bonds in Organic Synthesis or Related Processes. Phys. Sci. Rev. 2019, 4, 20180061. DOI: 10.1515/PSR-2018-0061.
  • Arora, A.; Oswal, P.; Sharma, D.; Purohit, S.; Tyagi, A.; Sharma, P.; Kumar, A. Organosulphur, Organoselenium and Organotellurium Compounds for the Development of Heterogeneous and Nanocatalytic Systems for Suzuki Coupling. Dalton Trans. 2022, 51, 17114–17144. DOI: 10.1039/D2DT02558B.
  • Ibrahim, M.; Meinerz, D. F.; Khan, M.; Ali, A.; Khan, M. I.; AlAsmari, A. F.; Alharbi, M.; Alshammari, A.; da Rocha, J. B. T.; Alasmari, F. Genotoxicity and Cytotoxicity Potential of Organoselenium Compounds in Human Leukocytes in Vitro. Saudi Pharm. J. 2023, 31, 101832. DOI: 10.1016/J.JSPS.2023.101832.
  • Ali, A.; Banerjee, B.; Srivastava, V.; Verma, V. K. Organochalcogen (Se/Te) Substituted Schiff Bases: Syntheses and Applications. Mater. Today Proc. 2023. DOI: 10.1016/j.matpr.2023.01.333.
  • Arora, E. Synthetic Methodologies and Applications of Chalcogen (S, Se, Te) Ionic Liquids: A Review. Phosphorus, Sulfur. Silicon Relat. Elem. 2023, 199, 103–111. DOI: 10.1080/10426507.2023.2263135.
  • Li, W.; Wang, F.; Shi, Y.; Yu, L. Polyaniline-Supported Tungsten-Catalyzed Oxidative Deoximation Reaction with High Catalyst Turnover Number. Chin. Chem. Lett. 2023, 34, 107505. DOI: 10.1016/j.cclet.2022.05.019.
  • Bartz, R. H.; Dapper, L. H.; Kazmierczak, J. C.; Schumacher, R. F.; Perin, G.; Thurow, S.; Penteado, F.; Lenardão, E. J. Lighting up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023, 13, 520. DOI: 10.3390/catal13030520.
  • Jarad, A. J.; Dahi, M. A.; Al-Noor, T. H.; El‑ajaily, M. M.; Al-Ayash, S. R.; Abdou, A. Synthesis, Spectral Studies, DFT, Biological Evaluation, Molecular Docking and Dyeing Performance of 1-(4-((2-Amino-5-Methoxy)Diazenyl)Phenyl) Ethanone Complexes with Some Metallic Ions. J. Mol. Struct. 2023, 1287, 135703. DOI: 10.1016/j.molstruc.2023.135703.
  • Latif, M. A.; Ahmed, T.; Hossain, M. S.; Chaki, B. M.; Abdou, A.; Kudrat-E-Zahan, M. Synthesis, Spectroscopic Characterization, DFT Calculations, Antibacterial Activity, and Molecular Docking Analysis of Ni(II), Zn(II), Sb(III), and U(VI) Metal Complexes Derived from a Nitrogen-Sulfur Schiff Base. Russ. J. Gen. Chem. 2023, 93, 389–397. DOI: 10.1134/S1070363223020214.
  • Hrichi, H.; Elkanzi, N. A. A.; Ali, A. M.; Abdou, A. A Novel Colorimetric Chemosensor Based on 2-[(Carbamothioylhydrazono) Methyl]Phenyl 4-Methylbenzenesulfonate (CHMPMBS) for the Detection of Cu(II) in Aqueous Medium. Res. Chem. Intermed. 2023, 49, 2257–2276. DOI: 10.1007/s11164-022-04905-4.
  • Singhal, S.; Khanna, P.; Khanna, L. Synthesis, DFT Studies, Molecular Docking, Antimicrobial Screening and UV Fluorescence Studies on ct-DNA for Novel Schiff Bases of 2-(1-Aminobenzyl) Benzimidazole. Heliyon 2019, 5, e02596. DOI: 10.1016/J.HELIYON.2019.E02596.
  • Mohapatra, R. K.; Perekhoda, L.; Azam, M.; Suleiman, M.; Sarangi, A. K.; Semenets, A.; Pintilie, L.; Al-Resayes, S. I. Computational Investigations of Three Main Drugs and Their Comparison with Synthesized Compounds as Potent Inhibitors of SARS-CoV-2 Main Protease (Mpro): DFT, QSAR, Molecular Docking, and in Silico Toxicity Analysis. J. King Saud Univ. Sci. 2021, 33, 101315. DOI: 10.1016/J.JKSUS.2020.101315.
  • Mohamed, G. G.; Omar, M. M.; Ahmed, Y. M. Metal Complexes of Tridentate Schiff Base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor. Z Anorg. Allg. Chem. 2021, 647, 2201–2218. DOI: 10.1002/zaac.202100245.
  • Sahoo, R. N.; Pattanaik, S.; Pattanaik, G.; Mallick, S.; Mohapatra, R. Review on the Use of Molecular Docking as the First Line Tool in Drug Discovery and Development. IJPS. 2022, 84, 1334–1337. DOI: 10.36468/pharmaceutical-sciences.1031.
  • Agu, P. C.; Afiukwa, C. A.; Orji, O. U.; Ezeh, E. M.; Ofoke, I. H.; Ogbu, C. O.; Ugwuja, E. I.; Aja, P. M. Molecular Docking as a Tool for the Discovery of Molecular Targets of Nutraceuticals in Diseases Management. Sci. Rep. 2023, 13, 13398. DOI: 10.1038/s41598-023-40160-2.
  • Shaaban, S.; Al-Faiyz, Y. S.; Alsulaim, G. M.; Alaasar, M.; Amri, N.; Ba-Ghazal, H.; Al-Karmalawy, A. A.; Abdou, A. Synthesis of New Organoselenium-Based Succinanilic and Maleanilic Derivatives and in Silico Studies as Possible SARS-CoV-2 Main Protease Inhibitors. Inorganics 2023, 11, 321. DOI: 10.3390/inorganics11080321.
  • Najar, A. M.; Eswayah, A.; Ben Moftah, M.; Omar, R. M. K.; Bobtaina, E.; Najwa, M.; Elhisadi, T. A.; Tahani, A.; Tawati, S. M.; Khalifa, A. M. M.; et al. Rigidity and Flexibility of Pyrazole, s-Triazole, and v-Triazole Derivative of Chloroquine as Potential Therapeutic against COVID-19. J. Med. Chem. Sci. 2023, 6, 2056–2084. DOI: 10.26655/JMCHEMSCI.2023.9.14.
  • Shaaban, S.; Abdou, A.; Alhamzani, A. G.; Abou-Krisha, M. M.; Al-Qudah, M. A.; Alaasar, M.; Youssef, I.; Yousef, T. A. Synthesis and in Silico Investigation of Organoselenium-Clubbed Schiff Bases as Potential Mpro Inhibitors for the SARS-CoV-2 Replication. Life (Basel) 2023, 13, 912. DOI: 10.3390/life13040912.
  • Pal, M.; Musib, D.; Roy, M. Transition Metal Complexes as Potential Tools against SARS-CoV-2: An in Silico Approach. New J. Chem. 2021, 45, 1924–1933. DOI: 10.1039/D0NJ04578K.
  • Gopal, J.; Muthu, M.; Sivanesan, I. A Comprehensive Survey on the Expediated anti-COVID-19 Options Enabled by Metal Complexes—Tasks and Trials. Molecules 2023, 28, 3354. DOI: 10.3390/molecules28083354.
  • FDA Approves First Treatment for COVID-19. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. (accessed April 2, 2024).
  • Naveed, M.; Uddin, S.; Khan, M. K.; Khan, Z. Remdesivir for the Treatment of COVID-19: A Need for Combined in Vivo and in Vitro Studies to Evaluate the Efficacy. J. Pharm. Pract. 2021, 34, 343–346. DOI: 10.1177/0897190021997001/ASSET/0897190021997001.FP.PNG_V03.
  • COVID-19: EMA Starts Rolling Review of Molnupiravir. European Medicines Agency, https://www.ema.europa.eu/en/news/covid-19-ema-starts-rolling-review-molnupiravir. (accessed April 2, 2024).
  • COVID-19 Vaccine Tracker. https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/. (accessed Apr 2, 2024).
  • Study Details. COVID-19 First in Human Study to Evaluate Safety, Tolerability, and Pharmacokinetics of EIDD-2801 in Healthy Volunteers, ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04392219. (accessed April 2, 2024).
  • Singh, A. K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A Systematic Review of Literature. Diabetes Metab. Syndr. 2021, 15, 102329. DOI: 10.1016/J.DSX.2021.102329.
  • Karges, J.; Cohen, S. M. Metal Complexes as Antiviral Agents for SARS-CoV-2. Chembiochem 2021, 22, 2600–2607. DOI: 10.1002/CBIC.202100186.
  • Malone, B.; Urakova, N.; Snijder, E. J.; Campbell, E. A. Structures and Functions of Coronavirus Replication–Transcription Complexes and Their Relevance for SARS-CoV-2 Drug Design. Nat. Rev. Mol. Cell Biol. 2022, 23, 21–39. DOI: 10.1038/s41580-021-00432-z.
  • Abd El-Lateef, H. M.; El-Dabea, T.; Khalaf, M. M.; Abu-Dief, A. M. Development of Metal Complexes for Treatment of Coronaviruses. Int. J. Mol. Sci. 2022, 23, 6418. DOI: 10.3390/IJMS23126418/S1.
  • Tripathi, S. K.; Mishra, S. B.; Nasim, M.; Khandelwal, B. L. Organoselenium/Tellurium-Bearing Macroacyclic and Cyclic Ligand Systems and Their Complexation Reactions. Phosphorus, Sulfur. Silicon Relat. Elem. 2005, 180, 1019–1034. DOI: 10.1080/10426500590906229.
  • Singh, J. D.; Milton, M. D.; Bhalla, G.; Khandelwal, B. L.; Kumar, P.; Singh, T. P.; Butcher, R. J. Design, Synthesis and Structural Aspects of Acyclic N3E2 (E = Se or Te) Type Donors and Its Complexes with Group 12 Metals. Phosphorus, Sulfur. Silicon Relat. Elem. 2001, 172, 223–230. DOI: 10.1080/10426500108046654.
  • Tripathi, S. K.; Khandelwal, B. L.; Gupta, S. K. A New Family of Chalcogen Bearing Macrocycles: Synthesis and Characterization of N4O2E2 (E = Se, Te) Type Compounds. Phosphorus, Sulfur. Silicon Relat. Elem. 2022, 177, 2285–2293. DOI: 10.1080/10426500214112.
  • Verma, V. K.; Jagannath, S. P. Cu(II) Complexes of Selenium Bearing Se2N4O2 Macrocyclic Schiff Bases: Synthesis and Electrochemical Studies. Mater. Today Proc. 2021, 34, 612–615. DOI: 10.1016/j.matpr.2020.01.577.
  • Asatkar, A. K.; Verma, V. K.; Guin, M.; Jain, P.; Butcher, R. J. Synthesis, Characterization, ab Initio Quantum Chemical Calculations and Molecular Docking Studies of Se Bearing Phenoxo-Bridged Bimetallic Ni(II) Complexes. J. Mol. Struct. 2020, 1221, 128771. DOI: 10.1016/j.molstruc.2020.128771.
  • Asatkar, A. K.; Nair, S.; Verma, V. K.; Verma, C. S.; Jain, T. A.; Singh, R.; Gupta, S. K.; Butcher, R. J. Syntheses of Phenoxo-Bridged Zn(II) and Metallamacrocyclic Hg(II) Complexes of Organochalcogen (Se, Te) Substituted Schiff-Bases: Structure and DNA-Binding Studies of Zn(II) Complexes. J. Coord. Chem. 2012, 65, 28–47. DOI: 10.1080/00958972.2011.639874.
  • Ali, I.; Wani, W. A.; Saleem, K. Empirical Formulae to Molecular Structures of Metal Complexes by Molar Conductance. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2013, 43, 1162–1170. DOI: 10.1080/15533174.2012.756898.
  • Gurusamy, S.; Krishnaveni, K.; Sankarganesh, M.; Nandini Asha, R.; Mathavan, A. Synthesis, Characterization, DNA Interaction, BSA/HSA Binding Activities of VO(IV), Cu(II) and Zn(II) Schiff Base Complexes and Its Molecular Docking with Biomolecules. J. Mol. Liq. 2022, 345, 117045. DOI: 10.1016/j.molliq.2021.117045.
  • Marinho, M. M.; Almeida-Neto, F. W. Q.; Marinho, E. M.; da Silva, L. P.; Menezes, R. R. P. P. B.; dos Santos, R. P.; Marinho, E. S.; de Lima-Neto, P.; Martins, A. M. C. Quantum Computational Investigations and Molecular Docking Studies on Amentoflavone. Heliyon 2021, 7, e06079. DOI: 10.1016/j.heliyon.2021.e06079.
  • El-Lateef, A.; Khalaf, H. M.; Kandeel, M. M.; Amer, M.; Abdelhamid, A. A.; Abdou, A. A. A. New Mixed-Ligand Thioether-Quinoline Complexes of Nickel(II), Cobalt(II), and Copper(II): Synthesis, Structural Elucidation, Density Functional Theory, Antimicrobial Activity, and Molecular Docking Exploration. Appl. Organom. Chem. 2023, 37, e7134. DOI: 10.1002/aoc.7134.
  • Abd El-Lateef, H. M.; Khalaf, M. M.; Amer, A. A.; Kandeel, M.; Abdelhamid, A. A.; Abdou, A. Synthesis, Characterization, Antimicrobial, Density Functional Theory, and Molecular Docking Studies of Novel Mn(II), Fe(III), and Cr(III) Complexes Incorporating 4-(2-Hydroxyphenyl Azo)-1-Naphthol (Az). ACS Omega. 2023, 8, 25877–25891. DOI: 10.1021/ACSOMEGA.3C01413.
  • Abd El-Lateef, H. M.; Khalaf, M. M.; Kandeel, M.; Amer, A. A.; Abdelhamid, A. A.; Abdou, A. Designing, Characterization, Biological, DFT, and Molecular Docking Analysis for New FeAZD, NiAZD, and CuAZD Complexes Incorporating 1-(2-Hydroxyphenylazo)-2-Naphthol (H2AZD). Comput. Biol. Chem. 2023, 105, 107908. DOI: 10.1016/J.COMPBIOLCHEM.2023.107908.
  • Chattaraj, P. K.; Roy, D. R.; Elango, M.; Subramanian, V. Stability and Reactivity of All-Metal Aromatic and Antiaromatic Systems in Light of the Principles of Maximum Hardness and Minimum Polarizability. J. Phys. Chem. A 2005, 109, 9590–9597. DOI: 10.1021/JP0540196.
  • Pan, S.; Solà, M.; Chattaraj, P. K. On the Validity of the Maximum Hardness Principle and the Minimum Electrophilicity Principle during Chemical Reactions. J. Phys. Chem. A 2013, 117, 1843–1852. DOI: 10.1021/JP312750N.
  • Parr, R. G.; Chattaraj, P. K. Principle of Maximum Hardness. J. Am. Chem. Soc. 1991, 113, 1854–1855. DOI: 10.1021/ja00005a072.
  • Morell, C.; Labet, V.; Grand, A.; Chermette, H. Minimum Electrophilicity Principle: An Analysis Based upon the Variation of Both Chemical Potential and Absolute Hardness. Phys. Chem. Chem. Phys. 2009, 11, 3417–3423. DOI: 10.1039/B818534D.
  • Chamorro, E.; Chattaraj, P. K.; Fuentealba, P. Variation of the Electrophilicity Index along the Reaction Path. J. Phys. Chem. A 2003, 107, 7068–7072. DOI: 10.1021/JP035435Y.
  • Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Variation of Electrophilicity during Molecular Vibrations and Internal Rotations. Theor. Chem. Acc. 2005, 113, 257–266. DOI: 10.1007/s00214-005-0634-3.
  • Chattaraj, P. K.; Giri, S.; Duley, S. Electrophilicity Equalization Principle. J. Phys. Chem. Lett. 2010, 1, 1064–1067. DOI: 10.1021/jz1001117.
  • Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals; Elsevier Science: Amsterdam, Netherlands, 2013. DOI: 10.1016/C2009-0-64000-9.
  • Verma, V. K. Selenium Bearing 24- & 28-Membered Macrocyclic Schiff Bases: Synthesis and Electrochemical Behaviour. Int. J. Curr. Adv. Res. 2019, 8, 16943–16945. DOI: 10.24327/ijcar.2019.16945.3152.
  • Milton, M. D.; Khan, S.; Singh, J. D.; Mishra, V.; Khandelwal, B. L. A Facile Access to Chalcogen and Dichalcogen Bearing Dialkylamines and Diols. Tetrahedron Lett. 2005, 46, 755–758. DOI: 10.1016/j.tetlet.2004.12.035.
  • Meenukutty, M. S.; Mohan, A. P.; Vidya, V. G.; Viju Kumar, V. G. Synthesis, Characterization, DFT Analysis and Docking Studies of a Novel Schiff Base Using 5-Bromo Salicylaldehyde and β-Alanine. Heliyon 2022, 8, e09600. DOI: 10.1016/j.heliyon.2022.e09600.
  • Huang, A.; Hu, A.; Li, L.; Ma, C.; Yang, T.; Gao, H.; Zhu, C.; Cai, Z.; Qiu, X.; Xu, J.; et al. Effect of Zn2+ on Emodin Molecules Studied by Time-Resolved Fluorescence Spectroscopy and Quantum Chemical Calculations. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 289, 122217. DOI: 10.1016/j.saa.2022.122217.
  • Vuckovic, S.; Gerolin, A.; Daas, T. J.; Bahmann, H.; Friesecke, G.; Gori-Giorgi, P. Density Functionals Based on the Mathematical Structure of the Strong-Interaction Limit of DFT. WIREs Comput. Mol. Sci. 2023, 13, e1634. DOI: 10.1002/wcms.1634.
  • Levina, E. O.; Tsirelson, V. G. DFT Potentials from a Chemical Perspective: Anatomy of Electron (de)Localization in Molecules and Crystals. J. Comput. Chem. 2023, 44, 1817–1835. DOI: 10.1002/JCC.27131.
  • Gaussian, 16; Revision, C.; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; et al. Gaussian, Inc.: Wallingford, CT, 2016.
  • Kaya, S.; Erkan, S.; Karakaş, D. Computational Design and Characterization of platinum-II Complexes of Some Schiff Bases and Investigation of Their Anticancer–Antibacterial Properties. Appl. Organom. Chem. 2022, 36, e6805. DOI: 10.1002/aoc.6805.
  • Waziri, I.; Yusuf, T. L.; Zarma, H. A.; Oselusi, S. O.; Coetzee, L. C. C.; Adeyinka, A. S. New Palladium (II) Complexes from Halogen Substituted Schiff Base Ligands: Synthesis, Spectroscopic, Biological Activity, Density Functional Theory, and Molecular Docking Investigations. Inorg. Chim. Acta 2023, 552, 121505. DOI: 10.1016/j.ica.2023.121505.
  • Patel, D.; Tripathi, N.; Ray, D.; Aswal, V. K.; Kuperkar, K.; Bahadur, P. CTAB Induced Growth and Shrinkage of Pluronics® P103 Micelles: Experimental and Theoretical Rationale. J. Mol. Liq. 2023, 391, 123315. DOI: 10.1016/j.molliq.2023.123315.
  • Ree, N.; Göller, A. H.; Jensen, J. H. Automated Quantum Chemistry for Estimating Nucleophilicity and Electrophilicity with Applications to Retrosynthesis and Covalent Inhibitors. Digit. Discov. 2024, 3, 347–354. DOI: 10.1039/D3DD00224A.
  • Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. DOI: 10.1007/S10822-013-9644-8.
  • Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature 2020, 581, 221–224. DOI: 10.1038/s41586-020-2179-y.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/JCC.21334.
  • D. S. 2021 client version Dassault Systèmes, BIOVIA, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.