5
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of a high-temperature polycyanophosphate resin

ORCID Icon, , ORCID Icon, , & ORCID Icon
Received 10 Oct 2023, Accepted 19 May 2024, Published online: 21 Jun 2024

References

  • Morozowich, N. L.; Nichol, J. L.; Mondschein, R. J.; Allcock, H. R. Design and Examination of an Antioxidant-Containing Polyphosphazene Scaffold for Tissue Engineering. Polym. Chem. 2012, 3, 778–786. DOI: 10.1039/c2py00570k.
  • Monge, S.; Canniccioni, B.; Graillot, A.; Robin, J.-J. Phosphorus-Containing Polymers: A Great Opportunity for the Biomedical Field. Biomacromolecules 2011, 12, 1973–1982. DOI: 10.1021/bm2004803.
  • Xu, G.-X.; Lu, Q.; Yu, B.-T.; Wen, L. Inorganic Polymer Phosphazene Disulfide as Cathode Material for Rechargeable Lithium Batteries. Solid State Ionic. 2006, 177, 305–309. DOI: 10.1016/j.ssi.2005.10.029.
  • Wang, N.; Mi, L.; Wu, Y.; Wang, X.; Fang, Q. Enhanced Flame Retardancy of Natural Rubber Composite with Addition of Microencapsulated Ammonium Polyphosphate and MCM-41 Fillers. Fire Saf. J. 2013, 62, 281–288. DOI: 10.1016/j.firesaf.2013.09.008.
  • Van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119–1153. DOI: 10.1016/j.chemosphere.2012.03.067.
  • Velencoso, M. M.; Battig, A.; Markwart, J. C.; Schartel, B.; Wurm, F. R. Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. DOI: 10.1002/anie.201711735.
  • Wang, C. S.; Shieh, J. Y. Phosphorus-Containing Epoxy Resin for an Electronic Application. J. Appl. Polym. Sci. 1999, 73, 353–361. DOI: 10.1002/(SICI)1097-4628(19990718)73:3<353::AID-APP6>3.0.CO;2-V.
  • Leistner, M.; Abu-Odeh, A. A.; Rohmer, S. C.; Grunlan, J. C. Water-Based Chitosan/Melamine Polyphosphate Multilayer Nanocoating That Extinguishes Fire on Polyester-Cotton Fabric. Carbohydr. Polym. 2015, 130, 227–232. DOI: 10.1016/j.carbpol.2015.05.005.
  • Bachtiar, E. V.; Kurkowiak, K.; Yan, L.; Kasal, B.; Kolb, T. Thermal Stability, Fire Performance, and Mechanical Properties of Natural Fibre Fabric-Reinforced Polymer Composites with Different Fire Retardants. Polymers (Basel) 2019, 11, 699–715. DOI: 10.3390/polym11040699.
  • Özmen, F. K.; Üreyen, M. E.; Koparal, A. S. Cleaner Production of Flame-Retardant-Glass Reinforced Epoxy Resin Composite for Aviation and Reducing Smoke Toxicity. J. Cleaner Prod. 2020, 276, 124065–124086. DOI: 10.1016/j.jclepro.2020.124065.
  • Santhosh, M. S.; Sasikumar, R.; Khadar, S. D. A.; Natrayan, L. Ammonium Polyphosphate Reinforced E-Glass/Phenolic Hybrid Composites for Primary E-Vehicle Battery Casings–A Study on Fire Performance. JNMES. 2021, 24, 247–253. DOI: 10.14447/jnmes.v24i4.a03.
  • Lazar, S. T.; Kolibaba, T. J.; Grunlan, J. C. Flame-Retardant Surface Treatments. Nat. Rev. Mater. 2020, 5, 259–275. DOI: 10.1038/s41578-019-0164-6.
  • Sun, Z.; Hou, Y.; Hu, Y.; Hu, W. Effect of Additive Phosphorus-Nitrogen Containing Flame Retardant on Char Formation and Flame Retardancy of Epoxy Resin. Mater. Chem. Phys. 2018, 214, 154–164. DOI: 10.1016/j.matchemphys.2018.04.065.
  • Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V. S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-Containing Flame Retardant Epoxy Thermosets: Recent Advances and Future Perspectives. Prog. Polym. Sci. 2021, 114, 101366–101402. DOI: 10.1016/j.progpolymsci.2021.101366.
  • Hsissou, R.; Dagdag, O.; Berradi, M.; El Bouchti, M.; Assouag, M.; El Bachiri, A.; Elharfi, A. Investigation of Structure and Rheological Behavior of a New Epoxy Polymer Pentaglycidyl Ether Pentabisphenol a of Phosphorus and of Its Composite with Natural Phosphate. SN Appl. Sci. 2019, 1, 869. DOI: 10.1007/s42452-019-0911-8.
  • Zhu, C.; He, M.; Cui, J.; Tai, Q.; Song, L.; Hu, Y. Synthesis of a Novel Hyperbranched and Phosphorus-Containing Charring-Foaming Agent and Its Application in Polypropylene. Polymers Adv. Techs. 2018, 29, 2449–2456. DOI: 10.1002/pat.4355.
  • Markwart, J. C.; Battig, A.; Velencoso, M. M.; Pollok, D.; Schartel, B.; Wurm, F. R. Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins. Molecules 2019, 24, 3901–3916. DOI: 10.3390/molecules24213901.
  • Wang, X.; Xing, W.; Song, L.; Yu, B.; Shi, Y.; Yang, W.; Hu, Y. Flame Retardancy and Thermal Properties of Novel UV-Curing Epoxy Acrylate Coatings Modified by Phosphorus-Containing Hyperbranched Macromonomer. J. Polym. Res. 2013, 20, 165–176. DOI: 10.1007/s10965-013-0165-x.
  • Huang, Z.; Shi, W. Thermal Degradation Behavior of Hyperbranched Polyphosphate Acrylate/Tri(Acryloyloxyethyl) Phosphate as an Intumescent Flame Retardant System. Polym. Degrad. Stab. 2007, 92, 1193–1198. DOI: 10.1016/j.polymdegradstab.2007.04.008.
  • Täuber, K.; Marsico, F.; Wurm, F. R.; Schartel, B. Hyperbranched Poly(Phosphoester)s as Flame Retardants for Technical and High Performance Polymers. Polym. Chem. 2014, 5, 7042–7053. DOI: 10.1039/C4PY00830H.
  • Markwart, J. C.; Battig, A.; Kuckhoff, T.; Schartel, B.; Wurm, F. R. First Phosphorus AB2 Monomer for Flame-Retardant Hyperbranched Polyphosphoesters: AB2 vs. A2 + B3. Polym. Chem. 2019, 10, 5920–5930. DOI: 10.1039/C9PY01156K.
  • Wang, C. S.; Lin, C. H. Synthesis and Properties of Phosphorus-Containing Epoxy Resins by Novel Method. J. Polym. Sci. A Polym. Chem. 1999, 37, 3903–3909. DOI: 10.1002/(SICI)1099-0518(19991101)37:21<3903::AID-POLA4>3.0.CO;2-X.
  • Ye, G.; Huo, S.; Wang, C.; Shi, Q.; Yu, L.; Liu, Z.; Fang, Z.; Wang, H. A Novel Hyperbranched Phosphorus-Boron Polymer for Transparent, Flame-Retardant, Smoke-Suppressive, Robust yet Tough Epoxy Resins. Composites, Part B 2021, 227, 109395. DOI: 10.1016/j.compositesb.2021.109395.
  • Ye, J.; Liang, G.; Gu, A.; Zhang, Z.; Han, J.; Yuan, L. Novel Phosphorus-Containing Hyperbranched Polysiloxane and Its High Performance Flame Retardant Cyanate Ester Resins. Polym. Degrad. Stab. 2013, 98, 597–608. DOI: 10.1016/j.polymdegradstab.2012.11.015.
  • El-Aouni, N.; Hsissou, R.; El Azzaoui, J.; El Bouchti, M.; Elharfi, A. Synthesis Rheological and Thermal Studies of Epoxy Polymer and Its Composite. Chem. Data Collect. 2020, 30, 100584. DOI: 10.1016/j.cdc.2020.100584.
  • Li, Q.; Jiang, P.; Su, Z.; Wei, P.; Wang, G.; Tang, X. Synergistic Effect of Phosphorus, Nitrogen, and Silicon on Flame-Retardant Properties and Char Yield in Polypropylene. J. Appl. Polymer Sci. 2005, 96, 854–860. DOI: 10.1002/app.21522.
  • Li, L.; Chen, Y.; Wu, X.; Xu, B.; Qian, L. Bi-Phase Flame-Retardant Effect of Dimethyl Methylphosphonate and Modified Ammonium Polyphosphate on Rigid Polyurethane Foam. Polym. Adv. Technol. 2019, 20, 2721–2728. DOI: 10.1002/pat.4702.
  • Huo, S.; Wang, J.; Yang, S.; Wang, J.; Zhang, B.; Zhang, B.; Chen, X.; Tang, Y. Synthesis of a Novel Phosphorus-Nitrogen Type Flame Retardant Composed of Maleimide, Triazine-Trione, and Phosphaphenanthrene and Its Flame Retardant Effect on Epoxy Resin. Polym. Degrad. Stab. 2016, 131, 106–113. DOI: 10.1016/j.polymdegradstab.2016.07.013.
  • Chang, Y.-L.; Wang, Y.-Z.; Ban, D.-M.; Yang, B.; Zhao, G.-M. A Novel Phosphorus-Containing Polymer as a Highly Effective Flame Retardant. Macro. Mat. Eng. 2004, 289, 703–707. DOI: 10.1002/mame.200400064.
  • Liu, Y.-L.; Hsiue, G.-H.; Chiu, Y.-S.; Jeng, R.-J.; Ma, C. Synthesis and Flame-Retardant Properties of Phosphorus-Containing Polymers Based on Poly(4-Hydroxystyrene). J. Appl. Polym. Sci. 1996, 59, 1619–1625. DOI: 10.1002/(SICI)1097-4628(19960307)59:10%3C1619::AID-APP14%3E3.0.CO;2-R.
  • Qian, X.; Guo, N.; Zhao, Y.; Lu, L.; Wang, H.; Wang, X.; Jin, J.; Shao, G.; Hu, Z. Synthesis of Novel Phosphorus-Based Flame Retardants Containing 9,9-Bis (4-Hydroxyphenyl) Fluorine and Their Reinforcements on the Fire Safety of Polypropylene. J. Therm. Anal. Calorim. 2018, 131, 2625–2636. DOI: 10.1007/s10973-017-6729-y.
  • Chaloux, B. L.; Yonke, B. L.; Purdy, A. P.; Yesinowski, J. P.; Glaser, E. R.; Epshteyn, A. P(CN)3 Precursor for Carbon Phosphonitride Extended Solids. Chem. Mater. 2015, 27, 4507–4510. DOI: 10.1021/acs.chemmater.5b01561.
  • Gou, H.; Yonke, B. L.; Epshteyn, A.; Kim, D. Y.; Smith, J. S.; Strobel, T. A. Pressure-Induced Polymerization of P(CN)3. J. Chem. Phys. 2015, 142, 194503. DOI: 10.1063/1.4919640.
  • Chaloux, B. L.; Shockley, J. M.; Wahl, K. J.; Tsoi, S.; Birnbaum, A. J.; Epshteyn, A. Mild Solvothermal Growth of Robust Carbon Phosphonitride Films. Chem. Mater. 2018, 30, 6082–6090. DOI: 10.1021/acs.chemmater.8b02508.
  • Wang, Q.; Gou, H.; Zhu, L.; Huang, H.; Biswas, A.; Chaloux, B. L.; Epshteyn, A.; Yesinowski, J. P.; Liu, Z.; Cody, G.; et al. Modifying Carbon Nitride through Extreme Phosphorus Substitution. ACS Mater. Lett. 2019, 1, 14–19. DOI: 10.1021/acsmaterialslett.9b00010.
  • Purdy, A. P.; Maza, W. A.; Chaloux, B. L.; Yesinowski, J. P.; Lanetti, M. G.; McPherson, K. M.; Epshteyn, A. A Solid, Amorphous, Lithiated Carbon Phosphonitride Displaying Lithium Ion Conductivity. J. Solid State Chem. 2022, 305, 122649. DOI: 10.1016/j.jssc.2021.122649.
  • Wehrhane, G.; Hübner, H. Ueber Den Cyanphosphor. Justus Liebigs Ann. Chem. 1864, 132, 277–289. DOI: 10.1002/jlac.18641320305.
  • Kulaev, I.; Vagabov, V.; Kulakovskaya, T. New Aspects of Inorganic Polyphosphate Metabolism and Function. J. Biosci. Bioeng. 1999, 88, 111–129. DOI: 10.1016/s1389-1723(99)80189-3.
  • Christ, J. J.; Willbold, S.; Blank, L. M. Methods for the Analysis of Polyphosphate in the Life Sciences. Anal. Chem. 2020, 92, 4167–4176. DOI: 10.1021/acs.analchem.9b05144.
  • Nielsen, M. L.; Pustinger, J. V.; Strobel, J. Phosphorus-31 Nuclear Magnetic Resonance Chemical Shifts of Phosphorus Compounds. J. Chem. Eng. Data 1964, 9, 167–170. DOI: 10.1021/je60021a003.
  • Lambert, C.; Weuster-Botz, D.; Weichenhain, R.; Kreutz, E. W.; de Graaf, A. A.; Schoberth, S. M. Monitoring of Inorganic Polyphosphate Dynamics in Corynebacterium glutamicum Using a Novel Oxygen Sparger for Real Time 31P In vivo NMR. Acta Biotechnol. 2002, 22, 245–260. DOI: 10.1002/1521-3846(200207)22:3/4%3C245::AID-ABIO245%3E3.0.CO;2-E.
  • Jonkers, G.; Mooyman, R.; De Lange, C. A. Ultraviolet Photoelectron Spectroscopy of Unstable Species: Nitrosyl Cyanide (ONCN). Chem. Phys. 1981, 57, 97–104. DOI: 10.1016/0301-0104(81)80024-9.
  • Tattershall, B. W. Phosphorus-Carbon Nuclear Magnetic Coupling Constants in Phosphorus(III) Cyanides. Polyhedron 1990, 9, 553–555. DOI: 10.1016/S0277-5387(00)86233-6.
  • Mandala, V. S.; Loh, D. M.; Shepard, S. M.; Geeson, M. B.; Sergeyev, I. V.; Nocera, D. G.; Cummins, C. C.; Hong, M. Bacterial Phosphate Granules Contain Cyclic Polyphosphates: Evidence from 31P Solid-State NMR. J. Am. Chem. Soc. 2020, 142, 18407–18421. DOI: 10.1021/jacs.0c06335.
  • Dillon, K. B.; Drury, C. J.; Straw, T. A. Some Phosphorus (III) and (V) compounds Containing the 4-Chlorophenyl Group. Polyhedron 1994, 13, 2605–2609. DOI: 10.1016/S0277-5387(00)81310-8.
  • Fluck, E.; Binder, H. Reaktionen Von Phosphor(III)-Verbindungen Mit Schwefeldioxid. Zeitschrift Anorg. allge. chemie. 1967, 354, 139–148. DOI: 10.1002/zaac.19673540304.
  • Klapstein, D.; Nau, W. M. Spectroscopy of Acyl and Carbonyl Isocyanates. Spectrochim. Acta, Part A 1994, 50, 307–316. DOI: 10.1016/0584-8539(94)80059-6.
  • Pretsch, E.; Buhlmann, P.; Affolter, C. Structure Determination of Organic Compounds: Tables of Spectral Data, 3rd ed. Springer: Germany, 2000.
  • Hirschmann, R. P.; Kniseley, R. N.; Fassel, V. A. The Infrared Spectra of Alkyl Isocyanates. Spectrochim. Acta. 1965, 21, 2125–2133. DOI: 10.1016/0371-1951(65)80228-4.
  • Wang, J.; Xu, B.; Wang, X.; Liu, Y. A Phosphorus-Based bi-Functional Flame Retardant for Rigid Polyurethane Foam. Polym. Degrad. Stab. 2021, 186, 109516–109528. DOI: 10.1016/j.polymdegradstab.2021.109516.
  • Serbezeanu, D.; Vlad-Bubulac, T.; Hamciuc, E.; Hamciuc, C.; Lisa, G.; Anghel, I.; Sofran, I.-E.; Preda, D.-M. Study on Thermal and Flame Retardant Properties of Phosphorus-Containing Polyimides. Rev. Chim. 2021, 72, 13–21. DOI: 10.37358/Rev.Chim.1949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.