30
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Novel phosphorus-doped molybdenum carbide catalyst for the reverse water-gas shift reaction

, , , , & ORCID Icon
Received 10 Jul 2023, Accepted 31 May 2024, Published online: 11 Jun 2024

References

  • Gao, L.; Shi, Y.; Yao, Z.; Gao, H.; Sun, Y.; Liang, F.; Jiang, B. Phenolic Resin as a Carbon Source for the Synthesis of Monometallic Mo and Bimetallic CoMo Carbides via Carbothermal Reduction Route. Phosphorus, Sulfur, Silicon Relat. Elem. 2018, 193, 267–272. DOI: 10.1080/10426507.2017.1418740.
  • Hamdan, M. A.; Lilic, A.; Vecino-Mantilla, M.; Nikitine, C.; Vilcocq, L.; Jahjah, M.; Pinel, C.; Perret, N. Influence of Reduction-Carburization Parameters on the Performance of Supported Molybdenum Carbide Catalysts in Succinic Acid Hydrogenation. Ind. Eng. Chem. Res. 2020, 59, 12964–12976. DOI: 10.1021/acs.iecr.0c01934.
  • Liu, Y.; Ding, J.; Bi, J.; Sun, Y.; Zhang, J.; Liu, K.; Kong, F.; Xiao, H.; Chen, J. Effect of Cu-Doping on the Structure and Performance of Molybdenum Carbide Catalyst for Low-Temperature Hydrogenation of Dimethyl Oxalate to Ethanol. Appl. Catal. A 2016, 529, 143–155. DOI: 10.1016/j.apcata.2016.11.009.
  • Zhao, J.; Bai, Y.; Liang, X.; Wang, T.; Wang, C. Photothermal Catalytic CO2 Hydrogenation over Molybdenum Carbides: Crystal Structure and Photothermocatalytic Synergistic Effects. J. CO2 Util. 2021, 49, 101562. DOI: 10.1016/j.jcou.2021.101562.
  • Liu, X.; Salahub, D. R. 2015 Molybdenum Carbide Nanoparticles as Catalysts for Oil Sands Upgrading: Dynamics and Free-Energy Profiles. AIP Conf. Proc., 1702, 190008. DOI: 10.1063/1.4938975.
  • Puello-Polo, E.; Ayala-G, M.; Brito, J. L. Sulfidability and Thiophene Hydrodesulfurization Activity of Supported NiMo Carbides. Catal. Commun. 2014, 53, 9–14. DOI: 10.1016/j.catcom.2014.04.018.
  • Zheng, W.; Cotter, T. P.; Kaghazchi, P.; Jacob, T.; Frank, B.; Schlichte, K.; Zhang, W.; Su, D. S.; Schüth, F.; Schlögl, R. Experimental and Theoretical Investigation of Molybdenum Carbide and Nitride as Catalysts for Ammonia Decomposition. J. Am. Chem. Soc. 2013, 135, 3458–3464. DOI: 10.1021/ja309734u.
  • Zhang, L.; Yang, Y.; Yao, Z.; Shi, Y.; Kang, X. Finding of a New Cycle Route in Ni/Mo2C Catalyzed CH4-CO2 Reforming. Catal. Sci. Technol. 2021, 11, 479–483. DOI: 10.1039/D0CY02428G.
  • Gao, H.; Yao, Z.; Shi, Y.; Jia, R.; Liang, F.; Sun, Y.; Mao, W.; Wang, H. Simple and Large-Scale Synthesis of β-Phase Molybdenum Carbides as Highly Stable Catalysts for Dry Reforming of Methane. Inorg. Chem. Front. 2018, 5, 90–99. DOI: 10.1039/C7QI00532F.
  • Gao, H.; Yao, Z.; Shi, Y.; Wang, S. Improvement of the Catalytic Stability of Molybdenum Carbide via Encapsulation within Carbon Nanotubes in Dry Methane Reforming. Catal. Sci. Technol. 2018, 8, 697–701. DOI: 10.1039/C7CY02506H.
  • Cao, J.; Ma, Y.; Guan, G.; Hao, X.; Ma, X.; Wang, Z.; Kusakabe, K.; Abudula, A. Reaction Intermediate Species during the Steam Reforming of Methanol over Metal Modified Molybdenum Carbide Catalysts. Appl. Catal. B. 2016, 189, 12–18. DOI: 10.1016/j.apcatb.2016.02.021.
  • Guillén-Villafuerte, O.; García, G.; Guil-López, R.; Nieto, E.; Rodríguez, J. L.; Fierro, J. L. G.; Pastor, E. Carbon Monoxide and Methanol Oxidations on Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) Electrodes at Different Temperatures. J. Power Sources 2013, 231, 163–172. DOI: 10.1016/j.jpowsour.2012.12.099.
  • He, C.; Tao, J. Exploration of the Electrochemical Mechanism of Ultrasmall Multiple Phases Molybdenum Carbides Nanocrystals for Hydrogen Evolution Reaction. RSC Adv. 2016, 6, 9240–9246. DOI: 10.1039/C5RA25367E.
  • Yan, Z.; He, G.; Shen, P. K.; Luo, Z.; Xie, J.; Chen, M. MoC-Graphite Composite as a Pt Electrocatalyst Support for Highly Active Methanol Oxidation and Oxygen Reduction Reaction. J. Mater. Chem. A 2014, 2, 4014–4022. DOI: 10.1039/c3ta14251e.
  • Yan, Z.; Wang, H.; Zhang, M.; Jiang, Z.; Jiang, T.; Xie, J. Pt Supported on Mo2C Particles with Synergistic Effect and Strong Interaction Force for Methanol Electro-Oxidation. Electrochim. Acta. 2013, 95, 218–224. DOI: 10.1016/j.electacta.2013.02.031.
  • Xiao, P.; Yan, Y.; Ge, X.; Liu, Z.; Wang, J. Y.; Wang, X. Investigation of Molybdenum Carbide Nano-Rod as an Efficient and Durable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. Appl. Catal. B. 2014, 154–155, 232–237. DOI: 10.1016/j.apcatb.2014.02.020.
  • Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M. D.; Hu, X.; Yi, T.; Liu, B.; Girault, H. H. A Nanoporous Molybdenum Carbide Nanowire as an Electrocatalyst for Hydrogen Evolution Reaction. Energy Environ. Sci. 2014, 7, 387–392. DOI: 10.1039/C3EE42441C.
  • Ma, Y.; Guo, Z.; Jiang, Q.; Wu, K. H.; Gong, H.; Liu, Y. Molybdenum Carbide Clusters for Thermal Conversion of CO2 to CO via Reverse Water-Gas Shift Reaction. J. Energy Chem. 2020, 50, 37–43. DOI: 10.1016/j.jechem.2020.03.012.
  • Attwood, M.; Akutsu, H.; Martin, L.; Cruickshank, D. L.; Turner, S. S. Above Room Temperature Spin Crossover in Thioamide-Functionalised 2,6-Bis (Pyrazol-1-yl) Pyridine Iron(ii) Complexes. Dalton Trans. 2019, 48, 90–98. DOI: 10.1039/C8DT03240H.
  • Zhang, X.; Zhu, X.; Lin, L.; Yao, S.; Zhang, M.; Liu, X.; Wang, X.; Li, Y. W.; Shi, C.; Ma, D. Highly Dispersed Copper over β-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift (RWGS) Reaction. ACS Catal. 2017, 7, 912–918. DOI: 10.1021/acscatal.6b02991.
  • Heracleous, E.; Koidi, V.; Lappas, A. A. CO2 Conversion over Cu-Mo2C Catalysts: Effect of the Cu Promoter and Preparation Method. Catal. Sci. Technol. 2021, 11, 1467–1480. DOI: 10.1039/D0CY02021D.
  • Dasireddy, V. D. B. C.; Vengust, D.; Likozar, B.; Kovač, J.; Mrzel, A. Production of Syngas by CO2 Reduction through Reverse Water-Gas Shift (RWGS) over Catalytically-Active Molybdenum-Based Carbide, Nitride and Composite Nanowires. Renew. Energ. 2021, 176, 251–261. DOI: 10.1016/j.renene.2021.05.051.
  • Marquart, W.; Raseale, S.; Prieto, G.; Zimina, A.; Sarma, B. B.; Grunwaldt, J. D.; Claeys, M.; Fischer, N. CO2 Reduction over Mo2C-Based Catalysts. ACS Catal. 2021, 11, 1624–1639. DOI: 10.1021/acscatal.0c05019.
  • Gao, J.; Wu, Y.; Jia, C.; Zhong, Z.; Gao, F.; Yang, Y.; Liu, B. Controllable Synthesis of α-MoC1-x and β-Mo2C Nanowires for Highly Selective CO2 Reduction to CO. Catal. Commun. 2016, 84, 147–150. DOI: 10.1016/j.catcom.2016.06.026.
  • Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. Potassium-Promoted Molybdenum Carbide as a Highly Active and Selective Catalyst for CO2 Conversion to CO. Chem. Sus. Chem. 2017, 10, 2408–2415. DOI: 10.1002/cssc.201700412.
  • Posada-Pérez, S.; Viñes, F.; Ramirez, P. J.; Vidal, A. B.; Rodriguez, J. A.; Illas, F. The Bending Machine: CO2 Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces. Phys. Chem. Chem. Phys. 2014, 16, 14912–14921. DOI: 10.1039/C4CP01943A.
  • Porosoff, M. D.; Yang, X.; Boscoboinik, J. A.; Chen, J. G. Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO2 to CO. Angew. Chem. Int. Ed. Engl. 2014, 53, 6705–6709. DOI: 10.1002/anie.201404109.
  • Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T. R. Understanding the Promoter Effect of Cu and Cs over Highly Effective β-Mo2C Catalysts for the Reverse Water-Gas Shift Reaction. Appl. Catal. B 2019, 244, 889–898. DOI: 10.1016/j.apcatb.2018.12.023.
  • Liu, X.; Kunkel, C.; Ramírez de la Piscina, P.; Homs, N.; Viñes, F.; Illas, F. Effective and Highly Selective CO Generation from CO Using a Polycrystalline α-MoC Catalyst. ACS Catal. 2017, 7, 4323–4335. DOI: 10.1021/acscatal.7b00735.
  • Porosoff, M. D.; Kattel, S.; Li, W.; Liu, P.; Chen, J. G. Identifying Trends and Descriptors for Selective CO2 Conversion to CO over Transition Metal Carbides. Chem. Commun. (Camb) 2015, 51, 6988–6991. DOI: 10.1039/C5CC01545F.
  • Yao, Z.; Yao, X.; Ding, W.; Shi, Y. The Effect of Citric Acid on the Microstructure and Activity of MoP Phosphide for Dry Reforming of Methane. Phosphorus, Sulfur, Silicon Relat. Elem. 2023, 198, 397–402. DOI: 10.1080/10426507.2022.2151063.
  • Zhang, W.; Ding, W.; Yao, Z.; Shi, Y.; Sun, Y.; Kang, X. A Simple Glucose Route to Nickel and Cobalt Phosphide Catalysts. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 826–831. DOI: 10.1080/10426507.2021.1924171.
  • Zhao, H.; Shi, Y.; Yao, Z.; Liang, L.; Wang, S.; Liu, Q.; Jiang, B.; Sun, Y. Phenol-Formaldehyde Resin Route to the Synthesis of Several Iron Group Transition Metal Phosphides. Phosphorus Sulfu Silicon Relat. Elem. 2019, 194, 836–842. DOI: 10.1080/10426507.2018.1550644.
  • Perez-Romo, P.; Potvin, C.; Manoli, J. M.; Chehimi, M. M.; Djéga-Mariadassou, G. Phosphorus-Doped Molybdenum Oxynitrides and Oxygen-Modified Molybdenum Carbides: Synthesis, Characterization, and Determination of Turnover Rates for Propene Hydrogenation. J. Catal. 2002, 208, 187–196. DOI: 10.1006/jcat.2002.3564.
  • Zhao, Y.; Yao, Z.; Shi, Y.; Qiao, X.; Wang, G.; Wang, H.; Yin, J.; Peng, F. A Novel Approach to the Synthesis of Bulk and Supported β-Mo2C Using Dimethyl Ether as a Carbon Source. New J. Chem. 2015, 39, 4901–4908. DOI: 10.1039/C5NJ00395D.
  • Shi, C.; Zhang, A.; Li, X.; Zhang, S.; Zhu, A.; Ma, Y.; Au, C. Ni-Modified Mo2C Catalysts for Methane Dry Reforming. Appl. Catal. A: Gen. 2012, 431–432, 164–170. DOI: 10.1016/j.apcata.2012.04.035.
  • Abu, I. I.; Smith, K. J. The Effect of Cobalt Addition to Bulk MoP and Ni2P Catalysts for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. J. Catal. 2006, 241, 356–366. DOI: 10.1016/j.jcat.2006.05.010.
  • Chen, J.; Yang, Y.; Shi, H.; Li, M.; Chu, Y.; Pan, Z.; Yu, X. Regulating Product Distribution in Deoxygenation of Methyl Laurate on Silica-Supported Ni-Mo Phosphides: Effect of Ni/Mo Ratio. Fuel 2014, 129, 1–10. DOI: 10.1016/j.fuel.2014.03.049.
  • Yao, Z.; Li, M.; Wang, X.; Qiao, X.; Zhu, J.; Zhao, Y.; Wang, G.; Yin, J.; Wang, H. A Novel Synthetic Route to Transition Metal Phosphide Nanoparticles. Dalton Trans. 2015, 44, 5503–5509. DOI: 10.1039/c4dt03886j.
  • Zhao, Z.; Wang, M.; Ma, P.; Zheng, Y.; Chen, J.; Li, H.; Zhang, X.; Zheng, K.; Kuang, Q.; Xie, Z. X. Atomically Dispersed Pt/CeO2 Catalyst with Superior CO Selectivity in Reverse Water Gas Shift Reaction. Appl. Catal. B 2021, 291, 120101. DOI: 10.1016/j.apcatb.2021.120101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.