8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, structural characterization, hirshfeld surface, DFT calculation and antifungal activity of novel quinoline carbonothioate compounds

, , , , & ORCID Icon
Received 14 Dec 2023, Accepted 18 May 2024, Published online: 01 Jul 2024

References

  • Zhong, L. K.; Sun, X. P.; Han, L.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Shi, J. J.; Liu, X. H. Design, Synthesis, Insecticidal Activity and SAR of Aryl Isoxazoline Derivatives Containing Pyrazole-5-Carboxamide Motif. J. Agric. Food Chem. 2023, 71, 14458–14470. DOI: 10.1021/acs.jafc.3c01608.
  • Min, L. J.; Wang, H.; Bajsa-Hirschel, J.; Yu, C. S.; Wang, B.; Yao, M. M.; Han, L.; Cantrell, C. L.; Duke, S. O.; Sun, N. B.; Liu, X. H. Novel Dioxolane Ring Compounds for the Management of Phytopathogen Diseases as Ergosterol Biosynthesis Inhibitors: Synthesis, Biological Activities and Molecular Docking. J. Agric. Food Chem. 2022, 70, 4303–4315. DOI: 10.1021/acs.jafc.2c00541.
  • Liu, X. H.; Wen, Y. H.; Cheng, L.; Xu, T. M.; Wu, N. J. Design, Synthesis, Pesticidal Activities of Pyrimidin-4-Amine Derivatives Bearing a 5-(Trifluoromethyl)-1,2,4-Oxadiazole Moiety. J. Agric. Food Chem. 2021, 69, 6968–6980. DOI: 10.1021/acs.jafc.1c00236.
  • Runge, F. F. Ueber einige produkte der steinkohlendestillation. Ann. Phys. 1834, 107, 65–78. DOI: 10.1002/andp.18341070502.
  • Rajendran, S.; Sivalingam, K.; Karnam Jayarampillai, R. P.; Wang, W.-L.; Salas, C. O. Friedlӓnder’s Synthesis of Quinolines as a Pivotal Step in the Development of Bioactive Heterocyclic Derivatives in the Current Era of Medicinal Chemistry. Chem. Biol. Drug Des. 2022, 100, 1042–1085. DOI: 10.1111/cbdd.14044.
  • Perin, N.; Nhili, R.; Cindrić, M.; Bertoša, B.; Vušak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.-H.; Hranjec, M. Amino Substituted Benzimidazo[1,2-a]Quinolines: Antiproliferative Potency, 3D-QSAR Study and DNA Binding Properties. Eur. J. Med. Chem. 2016, 122, 530–545. DOI: 10.1016/j.ejmech.2016.07.007.
  • Ni, Y.; Xu, T. M.; Zhong, L. K.; Kong, X. Y.; Shi, J. J.; Liu, X. H.; Kong, X. L.; Ji, W. J.; Tan, C. X. Synthesis and Fungicidal Activity of a Series of Fluorinated Quinoline Amide Compounds. Chin. J. Org. Chem. 2015, 35, 2218–2222. DOI: 10.6023/cjoc201504025.
  • Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.; Panchal, S. N.; Pate, H. D. Recent Advances in the Synthesis of Quinolines: A Review. RSC Adv. 2014, 4, 24463–24476. DOI: 10.1039/C4RA01814A.
  • Pei, D.; Zhang, F.; Liu, J.; Zhang, D. L.; Yang, R.; Zhong, L. K.; Tan, C. X.; Xu, T. M. Synthesis and Fungicidal Activities of 2,3-Dimethyl-4-(1-Acyloxy)Alkoxy-6-Tert-Butyl-8-Fluoroquinolines. J. Heterocyclic. Chem. 2019, 56, 1383–1387.
  • Cai, P. P.; Cheng, L.; Tan, C. X.; Weng, J. Q.; Xu, T. M. New Quinoline Carbonate Derivatives with Perfluoroisopropyl Hybrid: Design, Synthesis, and Fungicidal Activity. Indian J. Heterocycl. Chem. 2019, 29, 243–247.
  • Yang, G. Z.; Zhu, J. K.; Yin, X. D.; Yan, Y. F.; Wang, Y. L.; Shang, X. F.; Liu, Y. Q.; Zhao, Z. M.; Peng, J. W.; Liu, H. Design, Synthesis, and Antifungal Evaluation of Novel Quinoline Derivatives Inspired from Natural Quinine Alkaloids. J. Agric. Food Chem. 2019, 67, 11340–11353. DOI: 10.1021/acs.jafc.9b04224.
  • Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Paulpandi, M.; Rajaganesh, R.; Vasanthakumaran, M.; Madhavan, J.; Shafi, S. S.; Roni, M.; Portilla-Pulido, J. S.; et al. Synthesis of New Series of Quinoline Derivatives with Insecticidal Efects on Larval Vectors of Malaria and Dengue Diseases. Sci. Rep. 2022, 12, 4765. DOI: 10.1038/s41598-022-08397-5.
  • Cheng, L.; Cai, P. P.; Zhang, R. R.; Han, L.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H. Synthesis and Insecticidal Activity of New Quinoline Derivatives Containing Perfluoropropanyl Moiety. J. Heterocyclic Chem. 2019, 56, 1312–1317. DOI: 10.1002/jhet.3502.
  • Deng, X. L.; Zhu, C. H.; Zhou, X. M.; Bai, L. Y. Construction and Characterization of 3,7-dichloro-N-(2,6-Diethylphenyl)-N-(2-Propoxyethyl)Quinolone-8-Carboxamide: A Potential Novel Pesticide Compound. Chem. Heterocycl. Comp. 2021, 57, 49–54. DOI: 10.1007/s10593-021-02866-x.
  • Wang, D. W.; Lin, H. Y.; Cao, R. J.; Chen, T.; Wu, F. X.; Hao, G. F.; Chen, Q.; Yang, W. C.; Yang, G. F. Syntheses and Herbicidal Activity of Triketone-Quinoline Hybrid as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. J. Agric. Food Chem. 2015, 63, 5587–5596. DOI: 10.1021/acs.jafc.5b01530.
  • Sharma, S.; Singh, A.; Sharma, S.; Sharma, R.; Singh, J.; Kinarivala, N.; Nepali, K.; Liou, J. P. Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-a Medicinal Perspective. Anticancer. Agents Med. Chem. 2021, 21, 288–315. DOI: 10.2174/1871520620666200908104303.
  • Zhou, Y. Y.; Zhou, Z. G.; Chan, D.; Chung, P. Y.; Wang, Y. Q.; Chan, A. S. C.; Law, S.; Lam, K. H.; Tang, J. C. O. The Anticancer Effect of a Novel Quinoline Derivative 91b1 Through Downregulation of Lumican. Int. J. Mol. Sci. 2022, 23, 13181. DOI: 10.3390/ijms232113181.
  • Matada, B. S.; Pattanashettar, R.; Yernale, N. G. A Comprehensive Review on the Biological Interest of Quinoline and Its Derivatives. Bioorg. Med. Chem. 2021, 32, 115973. DOI: 10.1016/j.bmc.2020.115973.
  • Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Structural Modifications of Quinoline-Based Antimalarial Agents: Recent Developments. J. Pharm. Bioallied Sci. 2010, 2, 64–71. DOI: 10.4103/0975-7406.67002.
  • El-Azzouny, A. M. A.; Aboul-Enein, M. N.; Hamissa, M. F. Structural and Biological Survey of 7-Chloro-4-(Piperazin-1-yl)Quinoline and Its Derivatives. Drug Dev. Res. 2020, 81, 786–802. DOI: 10.1002/ddr.21678.
  • Ahmed, N.; Brahmbhatt, K. G.; Sabde, S.; Mitra, D.; Singh, I. P.; Bhutani, K. K. Synthesis and anti-HIV Activity of Alkylated Quinoline 2,4-Diols. Bioorg. Med. Chem. 2010, 18, 2875–2879.
  • Mandewale, M. C.; Thorat, B.; Nivid, Y.; Jadhav, R.; Nagarsekar, A.; Yamgar, R. Synthesis, Structural Studies and Antituberculosis Evaluation of New Hydrazine Derivatives of Quinoline and Their Zn(II) Complexes. J. Saudi. Chem. Soc. 2018, 22, 218–228. DOI: 10.1016/j.jscs.2016.04.003.
  • Patel, S. R.; Gangwal, R.; Sangamwar, A. T.; Jain, R. Synthesis, Biological Evaluation and 3D-QSAR Study of Hydrazide, Semicarbazide and Thiosemicarbazide Derivatives of 4-(Adamantan-1-yl)Quinoline as Anti-Tuberculosis Agents. Eur. J. Med. Chem. 2014, 85, 255–267. DOI: 10.1016/j.ejmech.2014.07.100.
  • Zhang, D. Y.; Tian, Q. H.; Lu, M. R.; Wu, X. M. Synthesis and Herbicidal Activities of 2-[o-4,6-Dimethoxylpyrimidinyl-2-Oxo(Thio)Phenyl]-1,3,4-Thia(Oxa)Diazoles. Chin. J. Org. Chem. 2011, 31, 1202–1207.
  • Cheng, L.; Zhang, R. R.; Wu, H. K.; Xu, T. M.; Liu, X. H. The Synthesis of 6-(Tertbutyl)-8-Fluoro-2,3-Dimethylquinoline Carbonate Derivatives and Their Antifungal Activity Against Pyricularia oryzae. Front. Chem. Sci. Eng. 2019, 13, 369–376. DOI: 10.1007/s11705-018-1734-7.
  • Cheng, L.; Cai, P. P.; Zhang, R. R.; Han, L.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H. Synthesis and Biological Activity of Some New 6-Perfluoropropanyl Quinoline Derivatives. J. Heterocyclic Chem. 2018, 55, 2585–2589. DOI: 10.1002/jhet.3316.
  • Fang, Y. M.; Zhang, R. R.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H.; Huang, H. Y.; Wu, H. K. Synthesis and Antifungal Activity of Some 6-Tert-Butyl-8-Chloro-2, 3-Dimethylquinolin-4-ol Derivatives Against Pyricularia oryae. LDDD. 2018, 15, 1314–1318. DOI: 10.2174/1570180815666180313121735.
  • Fang, Y. M.; Zhang, R. R.; Shen, Z. H.; Wu, H. K.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H. Synthesis, Antifungal Activity, and SAR Study of Some New 6-Perfluoropropanyl Quinoline Derivatives. J. Heterocyclic Chem. 2018, 55, 240–245. DOI: 10.1002/jhet.3031.
  • Liu, X. H.; Fang, Y. M.; Xie, F.; Zhang, R. R.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Huang, H. Y. Synthesis and In Vivo Fungicidal Activity of Some New Quinoline Derivatives Against Rice Blast. Pest Manag. Sci. 2017, 73, 1900–1907. DOI: 10.1002/ps.4556.
  • Sun, N. B.; Min, L. J.; Sun, X. P.; Zhai, Z. W.; Bajsa-Hirschel, J.; Wei, Z. C.; Hua, X. W.; Cantrell, C. L.; Xu, H.; Duke, S. O.; Liu, X. H. Novel Pyrazole Acyl(Thio)Urea Derivatives Containing a Biphenyl Scaffold as Potential Succinate Dehydrogenase Inhibitors: Design, Synthesis, Fungicidal Activity and SAR. J. Agric. Food Chem. 2024, 72, 2512–2525. DOI: 10.1021/acs.jafc.3c07735.
  • Min, L. J.; Shen, Z. H.; Bajsa-Hirschel, J.; Cantrell, C. L.; Han, L.; Hua, X. W.; Liu, X. H.; Duke, S. O. Synthesis, Crystal Structure, Herbicidal Activity and Mode of Action of New Cyclopropane-1,1-Dicarboxylic Acid Analogues. Pestic. Biochem. Physiol. 2022, 188, 105228. DOI: 10.1016/j.pestbp.2022.105228.
  • Vidhya, D.; Ramalingam, S.; Periandy, S.; Aarthi, R. Experimental and Theoretical Investigation on Optoelectronic Properties of Organic NLO Crystal; S-(4,6-Dimethyl-2-Pyrimidinyl) O-(p-Methoxybenzyl) Thiocarbonate. J. Mol. Struct. 2020, 1204, 127527. DOI: 10.1016/j.molstruc.2019.127527.
  • Wang, Z. X.; Jian, F. F.; Duan, C. Y.; Bai, Z. P.; You, X. Z. 2-(2-Hydroxybenzylidene)-1-(2-Picoloyl)Hydrazine Hemihydrate. Acta Crystallogr. C Cryst. Struct. Commun. 1998, 54, 1927–1929. DOI: 10.1107/S0108270198003527.
  • Hirshfeld, F. L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theoret. Chim. Acta 1977, 44, 129–138. DOI: 10.1007/BF00549096.
  • Sjoberg, P.; Politzer, P. Use of the Electrostatic Potential at the Molecular Surface to Interpret and Predict Nucleophilic Processes. J. Phys. Chem. 1990, 94, 3959–3961. DOI: 10.1021/j100373a017.
  • Sun, X. P.; Yu, W.; Min, L. J.; Han, L.; Hua, X. W.; Shi, J. J.; Sun, N. B.; Liu, X. H. Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs. Molecules 2023, 28, 3373. DOI: 10.3390/molecules28083373.
  • Liu, X. H.; Sun, X. P.; Yu, W.; Tan, C. X.; Weng, J. Q. Green Preparation of Fluoro Dimethyl Quinoline Thiol Derivative and Its Application. CN 116003319.
  • Sheldrick, G. M. SHELXS97 and SHELXL97; University of Göttingen: Germany, 1997.
  • Spackman, M. A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. DOI: 10.1039/B818330A.
  • Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Gromwood, D. J.; Spackman, P. R.; Jayalitaka, D.; Spackman, M. A. Crystal Explorer 17.5; The University of Western Australia: Perth, Australia, 2017.
  • Spackman, M. A.; McKinnon, J. J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4, 378–392. DOI: 10.1039/B203191B.
  • Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Electrostatic Potentials Mapped on Hirshfeld Surfaces Provide Direct Insight into Intermolecular Interactions in Crystals. CrystEngComm 2008, 4, 377–388. DOI: 10.1039/b715227b.
  • Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A.; Cheeseman, J.-R.; Montgomery, J.-A. Jr.; Vreven, T.; Kudin, K.-N.; Burant, J.-C.; et al. Gaussian 03, Revision C. 01; Gaussian, Inc.: Wallingford CT, 2004.
  • Liu, X. H.; Qiao, L.; Zhai, Z. W.; Cai, P. P.; Cantrell, C. L.; Tan, C. X.; Weng, J. Q.; Han, L.; Wu, H. K. Novel 4-Pyrazole Carboxamide Derivatives Containing Flexible Chain Motif: Design, Synthesis and Antifungal Activity. Pest Manag. Sci. 2019, 75, 2892–2900. DOI: 10.1002/ps.5463.
  • Sun, X. P.; Yu, C. S.; Min, L. J.; Cantrell, C. L.; Hua, X. W.; Sun, N. B.; Liu, X. H. Discovery of Highly Efficient Novel Antifungal Lead Compounds Targeting Succinate Dehydrogenase: Pyrazole-4-Carboxamide Derivatives with an N-Phenyl Substituted Amide Fragment. J. Agric. Food Chem. 2023, 71, 19312–19323. DOI: 10.1021/acs.jafc.3c04842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.