133
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Materials Screening Through GPU Accelerated Topological Mapping

&
Pages 529-537 | Received 15 Jul 2014, Accepted 27 Oct 2014, Published online: 09 Mar 2015

REFERENCES

  • Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid catalysts. Nature Chemistry 2009, 1 (1), 37–46.
  • Munter, T.R.; Landis, D.D.; Abild-Pedersen, F. Jones, G.; Wang, S.; Bligaard, T. Virtual materials design using databases of calculated materials properties. Computational Science & Discovery 2009, 2 (1), 015006.
  • Sauter, N.K.; Hattne, J.; Grosse-Kunstleve, R.W.; Nathaniel Echols. New Python-based methods for data processing. Acta Crystallographica. Section D, Biological Crystallography 2013, 69 (Pt 7), 1274–1282.
  • Jain, A.; Hautier, G.; Moore, C.J.; Ong, S.P.; Fischer, C.C.; Mueller, T.; Persson, K.A.; Ceder, G. A high-throughput infrastructure for density functional theory calculations. Computational Materials Science 2011, 50 (8), 2295–2310.
  • Curtarolo, S.; Hart, G.L.W.; Buongiorno-Nardelli, M.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nature Materials 2013, 12 (3), 191–201.
  • Hafner, J.; Wolverton, C.; Ceder, G. Toward computational materials design: The impact of density functional on materials research. MRS Bulletin 2006, 31 (September), 659–668.
  • Barbour, L.J. Crystal porosity and the burden of proof. Chemical Communications (Cambridge, England) 2006, (11), 1163–1168.
  • Blatov, V.A.; Ilyushin, G.D.; Blatova, O.A.; Anurova, N.A.; Ivanov-Schits, A.K.; Dem'yanets, L.N. Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition. Acta Crystallographica. Section B, Structural science 2006, 62 (Pt 6), 1010–1018.
  • First, E.L.; Floudas, C.A. MOFomics: Computational pore characterization of metal–organic frameworks. Microporous and Mesoporous Materials 2013, 165, 32–39.
  • Haldoupis, E.; Nair, S.; Sholl, D.S. Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. Journal of the American Chemical Society 2010, 132 (21), 7528–7539.
  • Haranczyk, M.; Sethian, J.A. Navigating molecular worms inside chemical labyrinths. Proceedings of the National Academy of Science 2009, 106 (51), 21472–21477.
  • Haranczyk, M.; Sethian, J.A. Automatic structure analysis in high-throughput characterization of porous materials. Journal of Chemical Theory and Computation 2010, 6 (11), 3472–3480.
  • Kim, J.; Martin, R.L. High-throughput Characterization of Porous Materials Using Graphics Processing Units. Journal of Chemical Theory and Computation 2012, 8, 1684–1693.
  • Pinheiro, M.; Martin, R.L.; Rycroft, C.H.; Jones, A.; Iglesia, E.; Haranczyk, M. Characterization and comparison of pore landscapes in crystalline porous materials. Journal of Molecular Graphics and Modelling 2013, 44, 208–219.
  • Watanabe, T.; Sholl, D.S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 2012, 28 (40), 14114–28.
  • Willems, T.F.; Rycroft, C.H.; Kazi, M.; Meza, J.C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials 2012, 149 (1), 134–141.
  • Martin, R.L.; Donofrio, D.D.; Sethian, J.A.; Haranczyk, M. Accelerating analysis of void space in porous materials on multicore and GPU platforms. International Journal of High Performance Computing Applications 2012, 26 (4), 347–357.
  • Foster, M.D.; Rivin, I.; Treacy, M.M.J.; Delgado Friedrichs, O. A geometric solution to the largest-free-sphere problem in zeolite frameworks. Microporous and Mesoporous Materials 2006, 90 (1–3), 32–38.
  • Theisen, K.; Smit, B.; Haranczyk, M. Chemical hieroglyphs: abstract depiction of complex void space topology of nanoporous materials. Journal of Chemical Information and Modeling 2010, 50 (4), 461–469.
  • Oganov, A.R. Ed. Modern Methods of Crystal Structure Prediction. Wiley-VCH: Weinheim, Germany, 2010.
  • Ciobanu, C.V.; Wang, C.-Z.; Ho, K.-M. Atomic Structure Prediction of Nanostructures, Clusters, and Surfaces. Wiley-VCH: Weinheim, Germany, 2013.
  • Ciobanu, C.V.; Wang, C.-Z.; Ho, K.-M. Global optimization of 2-dimensional nanoscale structures: A brief review. Materials and Manufacturing Processes 2009, 24, 109.
  • Davies, T.E.B.; Mehta, D.P.; Rodriguez-Lopez, J.-L. Gilmer, G.H.; Ciobanu, C.V. A variable-number genetic algorithm for growth of 1-D nanostructures into their global minimum configuration under radial confinement. Materials and Manufacturing Processes 2009 24, 265.
  • Paszkowicz, W. Genetic algorithms, a nature-inspired tool: A survey of applications in materials science and related fields: Part II. Materials and Manufacturing Processes 2013, 28, 708.
  • Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.
  • Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Experimental visualization of lithium diffusion in LixFePO4. Nature Materials 2008, 7 (9), 707–711.
  • Whittingham, M.S. Lithium batteries and cathode materials. Chemical reviews 2004, 104 (10), 4271–4301.
  • Aricò, A.S. Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature materials 2005, 4 (5), 366–377.
  • Li, H.; Wang, Z.; Chen, L.; Huang, X. Research on advanced materials for Li-ion batteries. Advanced Materials 2009, 21 (45), 4593–4607.
  • Ban, C.; Kappes, B.B.; Xu, Q.; Engtrakul, C.; Ciobanu, C.V.; Dillon, A.C.; Zhao, Y. Lithiation of silica through partial reduction. Applied Physics Letters 2012, 100 (24), 243905.
  • Panasonic. Rechargeable Lithium Ion OEM Batteries - Panasonic, 2014. http://www.panasonic.com/industrial/batteries-oem/oem/lithium-ion.aspx (accessed May 20, 2014).
  • Ong, S.P.; Richards, W.D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V.L.; Persson, K.A.; Ceder, G. Python Materials Genomics (pymatgen), A robust, open-source python library for materials analysis. Computational Materials Science 2013, 68, 314–319.
  • Bahn, S.R.; Jacobsen, K.W. An object-oriented scripting interface to a legacy electronic structure code. Computing in Science & Engineering 2002, 4 (3), 56–66.
  • Klöckner, A.; Pinto, N.; Lee, Y.; Catanzaro, B.; Ivanov, P.; Fasih, A. PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel Computing 2012, 38 (3), 157–174.
  • Hüser, E.; Rahn, J.; Stahn, J.; Geue, T.; Heitjanscd, P.; Schmidt, H. Lithium diffusion in congruent LiNbO 3 single crystals at low temperatures probed by neutron reflectometry. Physical Chemistry Chemical Physics 2014, 16, 3670–3674.
  • Li, J.; Yao, W.; Martin, S.; Vaknin, D. Lithium ion conductivity in single crystal LiFePO4. Solid State Ionics 2008, 179, 2016–2019.
  • Kanehori, K.; Kirino, F.; Kudo, T.; Miyauchi, K. Chemical diffusion coefficient of lithium in titanium disulfide single crystals. Journal of the Electrochemical Society 1991, 138 (8), 2216–2219.
  • Kuhn, A.; Sreeraj, P.; Pöttgen, R.; Wiemhöfed, H.-D.; Wilkening, M.; Hietjans, P. Li ion diffusion in the anode material li12 si7 : Ultrafast quasi-1d diffusion and two distinct fast 3d jump processes separately revealed by 7Li NMR relaxometry. Journal of the American Chemical Society 2011, 133, 11018–11021.
  • Dijkstra, E.W. A note on two problems in connexion with graphs. Numerische Mathematik 1959, 1 (1), 269–271.
  • The White House. Materials Genome Initiative, 2014. http://www.whitehouse.gov/mgi (accessed July 1, 2014).
  • Downs, R.T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. American Mineralogist 2003, 88, 247–250.
  • Gražulis, S.; Chateigner, D. Downs, R.T.; Yokochi, A.F.T.; M. Quirós, Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database – an open-access collection of crystal structures. Journal of Applied Crystallography 2009, 42 (4), 726–729.
  • Gražulis, S.; Daškevic, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD), an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research 2012, 40 (D1), D420–D427.
  • Wachtler, M.; Winter, M.; Besenhard, J.O. Anodic materials for rechargeable Li-batteries. Journal of Power Sources 2002, 105 (2), 151–160.
  • Zhou, W.; Upreti, S.; Stanley Whittingham, M. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries. Electrochemistry Communications 2011, 13 (10), 1102–1104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.