272
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Precipitants on MnOx-Ni/TiO2 SCR Catalysts Prepared by Titanium Slag as Raw Material

, , , &
Pages 1968-1975 | Received 14 Apr 2015, Accepted 09 Sep 2015, Published online: 23 Aug 2016

REFERENCES

  • Yang, B.; Zheng, D.H.; Shen, Y.S.; Qiu, Y.S.; Li, B.; Zeng, Y.W.; Shen, S.B.; Zhu, S.M. Influencing factors on low-temperature deNOx performance of Mn–La–Ce–Ni–Ox/PPS catalytic filters applied for cement kiln. Journal of Industrial and Engineering Chemistry 2015, 24, 148–152.
  • Boningari, T.; Ettireddy, P.R.; Somogyvari, A.; Liu, Y.; Vorontsov, A.; McDonald, C.A.; Smirniotis, P.G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis 2015, 325, 145–155.
  • Schill, L.; Putluru, S.S.R.; Jensen, A.D.; Fehrmann, R. Effect of Fe doping on low temperature deNOx activity of high-performance vanadia anatase nanoparticles. Catalysis Communications 2014, 56, 110–114.
  • Kompio, P.G.W.A.; Brückner, A.; Hipler, F.; Auer, G.; Lunert, E.; Grunert, W. A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis 2012, 286, 237–247.
  • Thirupathi, B.; Rajesh, K.; Panagiotis, G.S. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports. Applied Catalysis B: Environmental 2013, 140–141, 289–298.
  • Thirupathi, B.; Rajesh, K.; Panagiotis, G.S. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: Structural and catalytic properties. Catalysis B: Environmental 2012, 127, 255–264.
  • Narkhede, V.; Kumar, D.; Cursetji, R.; Sidiquie, T. Low temperature selective catalytic reduction of NOx over vanadium-based catalysts. SAE Int. J. Engines 2015, 8 (1), 380–385.
  • Li, C.; Cui, S.P.; Gong, X.Z.; Meng, X.C.; Wang, H.T. LCA Method of MSC and Low-NOx burner technology in cement manufacturing. Materials Science Forum 2013, 743–744, 802–806.
  • Leonhard, S.; Siva, S.R.P.; Rasmus, F.; Anker, D.J. Low-temperature NH3–SCR of NO on mesoporous Mn0.6Fe0.4/TiO2 prepared by a hydrothermal method. Catalysis Letters 2014, 144 (3), 395–402.
  • Hu, H.; Xie, J.L.; Fang, D.; He, F. Study of Co-Mn/TiO2 SCR catalyst at low temperature. Advanced Materials Research 2015, 1102, 11–16.
  • Shen, B.X.; Wang, Y.Y.; Wang, F.M.; Liu, T. The effect of Ce–Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature. Chemical Engineering Journal 2014, 236, 171–180.
  • Kijlstra, W.S.; Brands, D.S.; Smit, H.; Poels, E.K.; Bliek, A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Journal of Catalysis 1997, 171 (1), 219–230.
  • Peña, D.A.; Uphade, B.S.; Smirniotis, P.G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3(I): Evaluation and characterization of first row transition metals. Journal of Catalysis 2004, 221 (2), 421–431.
  • Jiang, B.Q.; Deng, B.Y.; Zhang, Z.Q.; Wu, Z.L.; Tang, X.J.; Yao, S.L.; Lu, H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. The Journal of Physical Chemistry C 2014, 118 (27), 14866–14875.
  • Fang, D.; He, F.; Mei, D.; Zhang, Z.; Xie, J.L.; Hu, H. Thermodynamic calculation for the activity and mechanism of Mn/TiO2 catalyst doped transition metals for SCR at low temperature. Catalysis Communications 2014, 52, 45–48.
  • Silvia, S.; Seong, M.J.; Pedro, A.; Paul, G.; Jesús, B. Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania. Catalysis Today 2002, 75, 331–338.
  • Naik, B.; Kim, S.M.; Jung, C.H.; Moon, S.Y.; Kim, S.H.; Park, J.Y. Enhanced H2 generation of Au-loaded, nitrogen-doped TiO2 hierarchical nanostructures under visible light. Advanced Materials Interfaces 2014, 1, 1300018. doi: 10.1002/admi.201300018.
  • Qi, G.S.; Yang, R.T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis 2003, 217 (2), 434–441.
  • Machocki, A.; Ioannides, T.; Stasinska, B.; Gac, W.; Avgouropoulos, G.; Delimaris, D. Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis 2004, 227 (2), 282–296.
  • Zhang, L.J.; Cui, S.P.; Guo, H.X.; Ma, X.Y.; Luo, X.G. The Influence of K+ cation on the Mn-Ce/TiO2 catalysts for the selective catalytic reduction of NO with NH3 at low temperature. Journal of Molecular Catalysis A Chemical 2014, 390, 14–21.
  • Wu, Z.B.; Jin, R.B.; Liu, Y.; Wang, H.Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications 2008, 9 (13), 2217–2220.
  • Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A General 2007, 327 (2), 261–269.
  • Mishra, T.; MohaPatra, P.; Parida, K.M. Synthesis, characterization and catalytic evaluation of iron-manganese mixed oxide pillared clay for VOC decomposition reaction. Applied Catalysis B Environmental 2008, 79 (3), 279–285.
  • Boningari, T.; Smirniotis, P.G. Effect of nickel as dopant in Mn/TiO2 catalysts for the low temperature selective reduction of NO with NH3. Catalysis Letters 2011, 141, 1399–1404.
  • Valverde, J.L.; Lucas, A.; Sánchez, P.; Dorado, F.; Romero, A. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Applied Catalysis B Environmental 2003, 43 (1), 43–56.
  • Vishwanathan, V.; Jun, K.W.; Kim, J.W.; Roh, H.S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts. Applied Catalysis A General 2004, 276, 251–255.
  • Si, Z.C.; Weng, D.; Wu, X.D.; Yang, J.; Wang, B. Modifications of CeO2-ZrO2 solid solutions by nickel and sulfate as catalysts for NO reduction with ammonia in excess O2. Catalysis Communications 2010, 11 (13), 1045–1048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.