734
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Process Optimization for Pulse Reverse Electrodeposition of Graphene-Reinforced Copper Nanocomposites

, , , &
Pages 1439-1446 | Received 26 Mar 2015, Accepted 07 Nov 2015, Published online: 18 May 2016

REFERENCES

  • Ebbesen, T.W. Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, Florida, USA, 1996.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 2010, 22 (35), 3906–3924.
  • Kim, K.T.; Cha, S.I.; Gemming, T.; Eckert, J.r.; Hong, S.H. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 2008, 4 (11), 1936–1941.
  • Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
  • Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
  • Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 2011, 10, 569–581.
  • Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3 (12), 3884–3890.
  • Parvez, K.; Wu, Z.-S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society 2014, 136 (16), 6083–6091.
  • Abdelkader, A.M.; Kinloch, I.A.; Dryfe, R.A. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents. ACS Applied Materials & Interfaces 2014, 6 (3), 1632–1639.
  • Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4 (9), 5245–5252.
  • Zhou, M.; Tang, J.; Cheng, Q.; Xu, G.; Cui, P.; Qin, L.-C. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chemical Physics Letters 2013, 572, 61–65.
  • Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442 (7100), 282–286.
  • Walker, L.S.; Marotto, V.R.; Rafiee, M.A.; Koratkar, N.; Corra, E.L. Toughening in graphene ceramic composites. ACS Nano 2011, 5 (4), 3182–3190.
  • Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia 2012, 66 (8), 594–597.
  • Jeon, C.-H.; Jeong, Y.-H.; Seo, J.-J.; Tien, H.; Hong, S.-T.; Yum, Y.-J.; Hur, S.-H.; Lee, K.-J. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. International Journal of Precision Engineering and Manufacturing 2014, 15 (6), 1235–1239.
  • Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene – aluminum nanocomposites. Materials Science and Engineering A 2011, 528, 7933–7937.
  • Rashad, M.; Pan, F.; Tang, A.; Asif, M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International 2014, 24 (2), 101–108.
  • Kuang, D.; Xu, L.; Liu, L.; Hu, W. Graphene-nickel composites. Applied Surface Science 2013, 273, 484–490.
  • An, Z.; He, L.; Toda, M.; Yamamoto, G.; Hashida, T.; Ono, T. Microstructuring of carbon nanotubes-nickel nanocomposite. Nanotechnology 2015, 26 (19), 195601.
  • Chen, L.-Y.; Konishi, H.; Fehrenbacher, A.; Ma, C.; Xu, J.-Q.; Choi, H.; Xu, H.-F.; Pfefferkorna, F.E.; L, X.-C. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia 2012, 67, 29–32.
  • Rashad, M.; Pan, F.; Tang, A.; Asif, M.; She, J.; Gou, J.; Mao, J.; H. Hu, Development of magnesium-graphene nanoplatelets composite. Journal of Composite Materials 2015, 49 (3), 285–293.
  • Kim, Y.; Lee, J.; Yeom, M.S.; Shin, J.W.; Kim, H.; Cui, Y.; Kysar, J.W.; Hone, J.; Jung, Y.; Jeon, S.; Han, S.M. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nature Communications 2013, 4, 2114.
  • Hwang, J.; Yoon, T.; Jin, S.H.; Lee, J.; Kim, T.-S.; Hong, S.H.; Jeon, S. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials 2013. doi:10.1002/adma.201302495.
  • Zhang, D.; Zhan, Z. Strengthening effect of graphene derivatives in copper matrix composites. Journal of Alloys and Compounds 2016, 654, 226–233.
  • Rashad, M.; Pan, F.; Asif, M.; Ullah, A. Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids. Materials Science and Technology, 1743284714Y.0000000726.
  • Chu, K.; Jia, C. Enhanced strength in bulk graphene–copper composites. Physica Status Solidi A 2014, 211 (1), 184–190.
  • Goli, P.; Ning, H.; Li, X.; Lu, C.Y.; Novoselov, K.S.; Balandin, A.A. Thermal properties of graphene–copper–graphene heterogeneous films. Nano Letters 2014, 14 (3), 1497–1503.
  • Boden, A.; Boerner, B.; Kusch, P.; Firkowska, I.; Reich, S. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites. Nano Letters 2014, 14 (6), 3640–3644.
  • Cui, Y.; Wang, L.; B. Li, Cao, G.; Fei, W. Effect of ball milling on the defeat of few-layer graphene and properties of copper matrix composites. Acta Metallurgica Sinica (English Letters) 2014, 27 (5), 937–943.
  • Kim, W.J.; Lee, T.J.; Han, S.H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 2014, 69, 55–65.
  • Qu, D.; Li, F.; Zhang, H.; Wang, Q.; Zhou, T.; Hu, C.; Xie, R. Preparation of graphene nanosheets/copper composite by spark plasma sintering. Advanced Materials Research 2014, 833, 276–279.
  • Tang, Y.; Yang, X.; Wang, R.; Li, M. Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Materials Science and Engineering: A 2014, 599, 247–254.
  • Li, M.; Che, H.; Liu, X.; Liang, S.; Xie, H. Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles. Journal of Materials Science 2014, 49 (10), 3725–3731.
  • Zhao, C.; Wang, J. Fabrication and tensile properties of graphene/copper composites prepared by electroless plating for structrual applications. Physica Status Solidi A 2014, 211 (12), 2878–2885.
  • Jagannadham, K. Electrical conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Journal of Vacuum Science & Technology B 2012, 30 (3), 03D109.
  • Xie, G.; Forslund, M.; Pan, J. Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Applied Materials & Interfaces 2014, 6 (10), 7444–7455.
  • Chandrasekar, M.S.; Pushpavanam, M. Pulse and pulse reverse plating — Conceptual, advantages and applications. Electrochimica Acta 2008, 53, 3313–3322.
  • Pavithra, C.L.P.; Sarada, B.V.; Rajulapati, K.V.; Rao, T.N.; Sundararajan, G. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness. Scientific Reports 2014, 4, 4049.
  • Sun, Y.; Chen, Q. Diameter dependent strength of carbon nanotube reinforced composite. Applied Physics Letters 2009, 95 (021901), 021901–021901-021903.
  • Agarwal, A.; Bakshi, S.R.; Lahiri, D. Carbon Nanotubes: Reinforced Metal Matrix Composites, CRC Press, Boca Raton, FL, USA, 2010.
  • Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 2004, 19 (1), 3–20.
  • Esawi, A.; Morsi, K.; Sayed, A.; Taher, M.; Lanka, S. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology 2010, 70 (16), 2237–2241.
  • Yang, Y.; Rigdon, W.; Huang, X.; Li, X. Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Scientific Reports 2013, 3, 2086.
  • Ding, G.; Wang, Y.; Deng, M.; Cui, X.; H. Wu, Zhu, L. Research and Application of CNT Composite Electroplating. In Carbon Nanotubes - From Research to Applications; D.S. Bianco Ed.; In Tech, Croatia, 2011, 81–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.