170
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of Microchanneled Composites by Novel Selective Polymer Degradation

, , &
Pages 2057-2063 | Received 30 Nov 2015, Accepted 12 Apr 2016, Published online: 09 Sep 2016

REFERENCES

  • Trask, R.S.; Williams, G.J.; Bond, I.P. PERSPECTIVE Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration & Biomimetics 2007, 2, P1–P9. doi:10.1088/1748-3182/2/1/P01
  • Olugebefola, S.C.; Aragón, A.M.; Hansen, C.J.; Hamilton, A.R.; Kozola, B.D.; Wu, W.; Geubelle, P.H.; Lewis, J.A.; Sottos, N.R.; White, S.R. Polymer Microvascular Network Composites. Journal of Composite Materials 2010, 44 (22), 2587–2603. doi:10.1177/0021998310371537
  • Lin, Y.; Lu, Y.; Su, Z.Q.; Meng, G. Functionalized composite structures for new generation airframes:a review. Composites Science and Technology 2005, 65, 1436–1446. doi:10.1016/j.compscitech.2004.12.015
  • Wang, Y.J.; Pham, D.T.; Ji, C.Q. Self-healing composites: A review. Cogent Engineering 2015, 2 (1), 1075686. doi:10.1080/23311916.2015.1075686
  • Saeed, M.U.; Chen, Z.F.; Li, B.B. Manufacturing Strategies for Microvascular Polymeric Composites: A Review. Composites Part A: Applied Science and Manufacturing 2015, 78, 327–340. doi:10.1016/j.compositesa.2015.08.028
  • Norris, C.J.; White, J.A. P.; McCombe, G.; Chatterjee, P.; Bond, I.P.; Trask, R.S. Autonomous stimulus triggered self-healing in smart structural composites. Smart Materials and Structures 2012, 21, 1–10. doi:10.1088/0964-1726/21/9/094027
  • Hemrick, J.G.; Curzio, E.L.; Loveland, E.R.; Sharp, K.W.; Schartow, R. Woven graphite fiber structures for use in ultra-light weight heat exchangers. Carbon 2011, 49 (14), 4820–4829. doi:10.1016/j.carbon.2011.06.094
  • Phillips, D.M.; Baur, J.W. A microvascular method for thermal activation and deactivation of shape memory polymers. Journal of intelligent material systems and structures 2013, 24, 1233–1244. doi:10.1177/1045389X12471907
  • Trask, R.S.; Bond, I.P. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Materials and Structures 2006, 15 (3), 704–710. doi:10.1088/0964-1726/15/3/005
  • Zainuddin, S.; Arefin, T.; Fahim, A.; Hosur, M.V.; Tyson, J.D.; Kumar, A.; Trovillion, J.; Jeelani, S. Recovery and improvement in low-velocity impact properties of e-glass/epoxy composites through novel self-healing technique. Composite Structures 2014, 108, 277–286. doi:10.1016/j.compstruct.2013.09.023
  • Trask, R.S.; Williams, G.J.; Bond, I.P. Bioinspired self-healing of advanced composite structures using hollow glass fibres. Journal of the Royal Society Interface 2007, 4, 363–71. doi:10.1098/rsif.2006.0194
  • Kousourakis, A.; Mouritz, A.P.; Bannister, M.K. Interlaminar properties of polymer laminates containing internal sensor cavities. Composite Structures 2006, 75, 610–618. doi:10.1016/j.compstruct.2006.04.086
  • Norris, C.J.; Bond, I.P.; Trask, R.S. Healing of low-velocity impact damage in vascularised composites. Composites Part A: Applied Science and Manufacturing 2013, 44, 78–85. doi:10.1016/j.compositesa.2012.08.022
  • Lima, M.S.F.; Sakamoto, J.M.S.; Simoes, J.G.A.; Riva, R. Laser processing of carbon fiber reinforced polymer composite for optical fiber guidelines. Physics Procedia 2013, 41, 572–580. doi:10.1016/j.phpro.2013.03.118
  • Lewis, J.A. Direct ink writing of 3D functional materials. Advanced Functional Materials 2006, 16, 2193–2204. doi:10.1002/adfm.200600434
  • Toohey, K.S.; Hansen, C.J.; Lewis, J.A.; White, S.R.; Sottos, N.R. Delivery of two-part self-healing chemistry via microvascular networks. Advanced Functional Materials 2009, 19 (9), 1399–1405. doi:10.1002/adfm.200801824
  • Hansen, C.J.; Wu, W.; Toohey, K.S.; White, S.R.; Sottos, N.R.; Lewis, J.A. Self healing materials with interpenetrating microvascular networks. Advanced Materials 2009, 21, 4143–4147. doi:10.1002/adma.200900588
  • Esser-Kahn, A.P.; Thakre, P.R.; Dong, H.F.; Patrick, J.F.; Vlasko-Vlasov, V.K.; Sottos, N.R.; Moore, J.S.; White, S.R. Three-Dimensional Microvascular Fiber-Reinforced Composites. Advanced Materials 2011, 23, 3654–3658. doi:10.1002/adma.201100933
  • Shu, M.; Denghao, S.; Nobuo, T. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures. Smart Materials and Structures 2014, 23 (11), 115014. doi:10.1088/0964-1726/23/11/115014
  • Kousourakis, A.; Mouritz, A.P. The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Materials and Structures 2010, 19 (8), 085021. doi:10.1088/0964-1726/19/8/085021
  • Roach, D. Real time crack detection using mountable comparative vacuum monitoring sensors. Smart Structures and Systems 2009, 5 (4), 317–328.
  • Sakurayama, N.; Minakuchi, S.; Takeda, N. Sensing and healing of disbond in composite stiffened panel using hierarchical system. Composite Structures 2015, 132, 833–841. doi:10.1016/j.compstruct.2015.06.074
  • Swait, T.J.; Rauf, A.; Grainger, R.; Bailey, P.B.S.; Lafferty, A.D.; Fleet, E.J.; Hand, R.J.; Hayes, S.A. Smart composite materials for self-sensing and self-healing. Plastics, Rubber and Composites 2012, 41 (4/5), 215–225. doi:10.1179/1743289811Y.0000000039
  • Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering 2016, 87, 92–119. doi:10.1016/j.compositesb.2015.09.057
  • Hansen, C.J. 5 - Microvascular-based self-healing materials. In Recent Advances in Smart Self-healing Polymers and Composites; G.L. Meng Ed.; Cambridge, UK, Woodhead Publishing, 2015; p. 129–157.
  • Patrick, J.F.; Hart, K.R.; Krull, B.P.; Diesendruck, C.E.; Moore, J.S.; White, S.R.; Sottos, N.R. Continuous self-healing life cycle in vascularized structural composites. Advanced Materials 2014, 26, 4302–4308. doi:10.1002/adma.201400248
  • Kling, S.; Czigány, T. Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling. Composites Science and Technology 2014, 99 (15), 82–88. doi:10.1016/j.compscitech.2014.05.020
  • Toohey, K.S.; Sottos, N.R.; Lewis, J.A.; Moore, J.S.; White, S.R. Self-healing materials with microvascular networks. Nature Materials 2007, 6 (8), 581–585. doi:10.1038/nmat1934
  • Pang, J.W.C.; Bond, I.P. ‘Bleeding composites'—damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing 2005, 36 (2), 183–188. doi:10.1016/j.compositesa.2004.06.016
  • McCombe, G.P.; Rouse, J.; Trask, R.S.; Withers, P.J.; Bond, I.P. X-ray damage characterisation in self-healing fibre reinforced polymers. Composites Part A: Applied Science and Manufacturing 2012, 43 (4), 613–620. doi:10.1016/j.compositesa.2011.12.020
  • Coppola, A.M.; Griffin, A.S.; Sottos, N.R.; White, S.R. Retention of mechanical performance of polymer matrix composites above the glass transition temperature by vascular cooling. Composites Part A: Applied Science and Manufacturing 2015, 78, 412–423. doi:10.1016/j.compositesa.2015.07.012
  • Yu, K.; Phillips, D.M.; Baur, J.W.; Qi, H.J. Analysis of shape-memory polymer composites with embedded microvascular system for fast thermal response. Journal of Composite Materials 2014, 49 (15), 1881–1893. doi:10.1177/0021998314540194
  • Soghrati, S.; Aragón, A.M.; Geubelle, P.H. Design of actively-cooled microvascular materials: a genetic algorithm inspired network optimization. Structural and Multidisciplinary Optimization 2014, 49 (4), 643–655. doi:10.1007/s00158-013-1000-z
  • McElroy, M.W.; Lawrie, A.; Bond, I.P. Optimisation of an air film cooled CFRP panel with an embedded vascular network. International Journal of Heat and Mass Transfer 2015, 88, 284–296. doi:10.1016/j.ijheatmasstransfer.2015.04.071
  • Huang, C.Y.; Trask, R.S.; Bond, I.P. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature. Journal of the Royal Society Interface 2010, 7 (49), 1229–1241. doi:10.1098/rsif.2009.0534
  • Kousourakis, A.; Mouritz, A.P.; Bannister, M.K. Tensile and compressive properties of polymer laminates containing internal sensor cavities. Composites Part A: Applied Science and Manufacturing 2008, 39 (9), 1394–1403. doi:10.1016/j.compositesa.2008.05.003
  • Coppola, A.M.; Thakre, P.R.; Sottos, N.R.; White, S.R. Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. Composites Part A: Applied Science and Manufacturing 2014, 59, 9–17. doi:10.1016/j.compositesa.2013.12.006
  • Luterbacher, R.; Trask, R.S.; Bond, I.P. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications. Smart Materials and Structures 2016, 25 (1), 015003. doi:10.1088/0964–1726/25/1/015003
  • Williams, G.J.; Trask, R.S.; Bond, I.P. Self-healing sandwich panels: Restoration of compressive strength after impact. Composites Science and Technology 2008, 68 (15–16), 3171–3177. doi:10.1016/j.compscitech.2008.07.016
  • ASTM Standard D 2344/D 2344 M −00, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. West Conshohocken: American Society for Testing and Materials, 2000.
  • ASTM Standard D 790–02, Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. West Conshohocken: American Society for Testing and Materials, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.