433
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Manufacturing of instructional aids for students at low cost by means of 3D printing

ORCID Icon
Pages 1116-1130 | Received 26 Aug 2016, Accepted 24 Oct 2016, Published online: 27 Dec 2016

References

  • Laperrière, L.; Reinhart, G. (Eds.) CIRP Encyclopedia of Production Engineering; Springer: Berlin, 2014.
  • Kamrani, A.; Nasr, E.A. (Eds.) Rapid Prototyping: Theory and Practice; Springer: New York, 2006.
  • Venuvinod, P.K.; Ma, W. Rapid Prototyping: Laser-based and Other Technologies; Springer: New York, 2004.
  • Segal, D. Exploring Materials through Patent Information; Royal Society of Chemistry: Cambridge, 2014.
  • Cooper, K.G. Rapid Prototyping Technology: Selection and Application; Marcel Dekker Inc.: New York, 2001.
  • RepRap Options: http://reprap.org/wiki/RepRap_Options.
  • Nasr, E.A.; Kamrani, A.K. Computer-Based Design and Manufacturing: An Information-Based Approach; Springer: New York, 2007.
  • Fodran, E.; Koch, M.; Menon, U. Mechanical and dimensional characteristics of fused deposition modeling build styles. In Proceedings of 7th Solid Freeform Fabrication Symposium, Vol. 7. The University of Texas: Austin, 1996; 419–442.
  • Bertoldi, M.; Yardimci, M.A.; Pistor, C.M.; Guceri, S.I.; Sala, G. Mechanical characterization of parts processed via fused deposition. In Proceedings of 9th Solid Freeform Fabrication Symposium, Vol. 9. The University of Texas: Austin, 1998; 557–565.
  • Anitha, R.; Arunachalam, S.; Radhakrishnan, P. Critical parameters influencing the quality of prototypes in fused deposition modeling. Journal of Materials Processing Technology 2001, 118, 385–388.
  • Evans, B. Practical 3D Printers; Apress: New York, 2012.
  • Henke, B.; Sawodny, O.; Schmidt, S.; Neumann, R. Modeling of hybrid stepper motors for closed-loop operation. In 6th IFAC Symposium on Mechatronic Systems, The International Federation of Automatic Control: Hangzhou, 2013; 177–183.
  • Griewank, A. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation; SIAM: Philadelphia, PA, 2000.
  • Karr, C. Practical Applications of Computational Intelligence for Adaptive Control; CRC Press: Boca Raton, FL, 1999.
  • Mitra, S.; Mitra, A. A genetic algorithms based technique for computing the nonlinear least squares estimates of the parameters of sum of exponentials model. Expert Systems with Applications 2012, 39, 6370–6379.
  • El-Samahy, A.A.; Shamseldin, M.A. Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control. Ain Shams Engineering Journal 2016, in press.
  • Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Transactions of the ASME 1942, 64, 759–768.
  • Elsodany, N.M.; Rezeka, S.F.; Maharem, N.A. Adaptive PID control of a stepper motor driving a flexible rotor. Alexandria Engineering Journal 2011, 50, 127–136.
  • Zaky, M.S. A self-tuning PI controller for the speed control of electrical motor drives. Electric Power Systems Research 2015, 119, 293–303.
  • Chang, W.D.; Hwang, R.C.; Hsieh, J.G. A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach. Journal of Process Control 2002, 12, 233–242.
  • Banihani, S.; Al-Widyan, K.; Al-Jarrah, A.; Ababneh, M. A genetic algorithm based lookup table approach for optimal stepping sequence of open-loop stepper motor systems. Journal of Control Theory and Applications 2013, 11, 35–41.
  • Add a closed loop control to your 3D printer and never worry about missed steps again: http://www.3ders.org/articles/20150122-add-a-closed-loop-control-to-your-3d-printer-and-never-worry-about-missed-steps-again.html.
  • Closed-loop stepper controller progress: http://forums.reprap.org/read.php?1,263680.
  • Alexander, P.; Allen, S.; Dutta, D. Part orientation and build cost determination in layered manufacturing. Computer-Aided Design 1998, 30, 343–358.
  • Anitha, R.; Arunachalamb, S.; Radhakrishnan, P. Critical parameters influencing the quality of prototypes in fused deposition modelling. Journal of Materials Processing Technology 2001, 118, 385–388.
  • Lee, B.H.; Abdullah, J.; Khan, Z.A. Optimization of rapid prototyping parameters for production of flexible ABS object. Journal of Materials Processing Technology 2005, 169, 54–61.
  • Jin, Y.; Zhang, J.; Wang, Y.; Zhu, Z. Filament geometrical model and nozzle trajectory analysis in the fused deposition modeling process. Journal of Zhejiang University Science A 2009, 10, 370–376.
  • Chang, D.; Huang, B. Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. The International Journal of Advanced Manufacturing Technology 2011, 53, 1027–1037.
  • Peng, A.; Xiao, X.; Yue R. Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. The International Journal of Advanced Manufacturing Technology 2014, 73, 87–100.
  • Qiu, D.; Langrana, N.A. Void eliminating toolpath for extrusion-based multi-material layered manufacturing. Rapid Prototyping Journal 2002, 8, 38–45.
  • Zhang, Y.; Chou, Y.K. Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2006, 220, 1663–1671.
  • Jin, Y.; He, Y.; Xue, G.; Fu, J. Parallel-based path generation method for fused deposition modeling. The International Journal of Advanced Manufacturing Technology 2015, 77, 927–937.
  • Costa, S.; Duarte, F.; Covas, J.A. Using MATLAB to compute heat transfer in free form extrusion. In MATLAB – A Ubiquitous Tool for the Practical Engineer; Ionescu, C.M. Ed.; INTECH open: Rijeka, Croatia, 2011; 453–474. (www.intechopen.com)
  • Rayegani, F.; Onwubolu, G.C. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). The International Journal of Advanced Manufacturing Technology 2014, 73, 509–519.
  • Liu, X.; Zhang, M.; Li, S.; Si, L.; Peng, J.; Hu, Y. Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. The International Journal of Advanced Manufacturing Technology 2016, 1–11. doi:10.1007/s00170-016-9263-3.
  • Boschetto, A.; Bottini, L. Triangular mesh offset aiming to enhance Fused Deposition Modeling accuracy. The International Journal of Advanced Manufacturing Technology 2015, 80, 99–111.
  • Panda, B.N.; Shankhwar, K.; Garg, A.; Jian, Z. Performance evaluation of warping characteristic of fused deposition modelling process. The International Journal of Advanced Manufacturing Technology 2016, 1–13, doi:10.1007/s00170-016-8914-8.
  • Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Corbella, X.; Busqué, R.; Gomez-Gras, G. Finite element analysis of the thermal behavior of a RepRap 3D printer liquefier. Mechatronics 2016, 36, 119–126.
  • Leary, M.; Merli, L.; Torti, F.; Mazur, M.; Brandt, M. Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures. Materials and Design 2014, 63, 678–690.
  • Singh, S.; Singh, R. Some investigations on surface roughness of aluminium metal composite primed by fused deposition modeling-assisted investment casting using reinforced filament. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2016, 1–9. doi:10.1007/s40430-016-0524-8.
  • Lestan, Z.; Klancnik, S.; Balic, J.; Brezocnik, M. Modeling and design of experiments of laser cladding process by genetic programming and nondominated sorting. Materials and Manufacturing Processes 2015, 30, 458–463.
  • Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; Martina, F. Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals - Manufacturing Technology 2016, article in press.
  • Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Advances in Manufacturing 2015, 3, 42–53.
  • Tan, K.C.; Khor, E.F.; Lee, T.H. Multiobjective Evolutionary Algorithms and Applications; Springer-Verlag: London, 2005.
  • Yu, X.; Gen, M. Introduction to Evolutionary Algorithms; Springer-Verlag: London, 2010.
  • Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 2002, 6, 182–197.
  • Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 1994, 2, 221–248.
  • Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston, MA, 1989.
  • Corne, D.W.; Knowles, J.D.; Oates, M.J. The Pareto envelope-based selection algorithm for multiobjective optimization. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference, Paris, France, September 18–20, 2000 Proceedings; Schoenauer M.; Deb K.; Rudolph G.; Yao X.; Lutton E.; Merelo J.J.; Schwefel H.P. Eds.; Springer: Berlin, 2000; 839–848.
  • Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland, 2001.
  • Knowles, J.D.; Corne, D.W. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 2000, 8, 149–172.
  • Goldberg, D.E. Sizing populations for serial and parallel genetic algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms; Morgan Kaufmann Publishers Inc.: San Francisco, CA, 1989; 70–79.
  • Tan, K.; Yang, Y.; Goh, C. A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation 2006, 10, 527–549.
  • Jurecka, F. Robust Design Optimization Based on Metamodeling Techniques. Dissertation for the attainment of the academic degree of Doktor-Ingenieur, Fakultät Bauingenieur- und Vermessungswesen, Technische Universität: München, 2007.
  • Ryberg, A.; Bäckryd, R.D., Nilsson, L. Metamodel-Based Multidisciplinary Design Optimization for Automotive Applications. Technical Report LIU-IEI-R-12/003. Division of Solid Mechanics, Linköping University: Linköping, 2012.
  • Ryberg, A. Metamodel-based design optimization – a multidisciplinary approach for automotive structures. Thesis No. 1565. Linköping Studies in Science and Technology: Linköping, 2013.
  • Sobieszczanski-Sobieski, J. Overcoming Bellman’s curse of dimensionality in large optimization problems. In Applied Mathematics in Aerospace Science and Engineering; Miele, A.; Salvetti, A. Eds.; Springer: Boston, MA, 1994; 437–443.
  • Shan, S.; Wang, G.G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization 2010, 41, 219–241.
  • Kwak, N.S.; Lee, J. An enhancement of selection and crossover operations in real-coded genetic algorithm for large-dimensionality optimization. Journal of Mechanical Science and Technology 2016, 30, 237–247.
  • Deb, K.; Karthik, S.; Okabe, T. Self-adaptive simulated binary crossover for real-parameter optimization. In Proceedings of 9th Conference on Genetic and Evolutionary Computation; Association for Computing Machinery: London, 2007; 1187–1194.
  • Ono, I.; Kita, H.; Kobayashi, S. A real-coded genetic algorithm using the unimodal normal distribution crossover. In Advances in Evolutionary Computing: Theory and Applications; Ghosh, A.; Tsutsui, S. Eds.; Springer-Verlag: New York, NY, 2003; 213–237.
  • Deep, K.; Thakur, M. A new crossover operator for real coded genetic algorithms. Applied Mathematics and Computation 2007, 188, 895–911.
  • Adams, B.M.; Dalbey, K.R.; Eldred, M.S.; Swiler, L.P.; Bohnhoff, W.J.; Eddy, J.P.; Vigil, D.M.; Hough, P.D.; Lefantzi, S. DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version 5.2, User’s Manual, SAND2010–2183, Unlimited Release. Sandia National Laboratories: Livermore, CA 94551, Updated November 30, 2011.
  • Koziel, S.; Ciaurri, D.E.; Leifsson, L. Surrogate-based methods. In Computational Optimization, Methods and Algorithms; Koziel, S.; Yang, X. Ed.; Springer-Verlag: Berlin, 2011; 33–59.
  • Arisoy, Y.M.; Özel, T. Machine learning based predictive modeling of machining induced microhardness and grain size in Ti–6Al–4V alloy. Materials and Manufacturing Processes 2015, 30, 425–433.
  • Tutum, C.C.; Deb, K.; Baran, I. Constrained efficient global optimization for pultrusion process. Materials and Manufacturing Processes 2015, 30, 538–551.
  • Chakraborti, N. Critical assessment 3: The unique contributions of multi-objective evolutionary and genetic algorithms in materials research. Materials Science and Technology 2014, 30, 1259–1262.
  • Chakraborti, N. Promise of multiobjective genetic algorithms in coating performance formulation. Surface Engineering 2014, 30, 79–82.
  • Mohanty, K.; Roy, G.G.; Chakraborti, N. Simulation and meta-modeling of electron beam welding using genetic algorithms. La Metallurgia Italiana 2016, 3, 45–48.
  • Ong, Y.S.; Nair, P.B.; Keane, A.J.; Wong, K.W. Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In Knowledge Incorporation in Evolutionary Computation; Jin, Y. Ed.; Springer-Verlag: Berlin, 2005, 305–331.
  • van Veldhuizen, D.A.; Lamont, G.B. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation 2000, 8, 125–147.
  • Mashwani, W.K. Hybrid multiobjective evolutionary algorithms: A survey of the state-of-the-art. IJCSI International Journal of Computer Science Issues 2011, 8, ISSN (online www.IJCSI.org): 1694–0814.
  • Zhou, A.; Qu, B.; Li, H.; Zhao, S.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 2011, 1, 32–49.
  • Gen, M.; Lin, L. Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. Journal of Intelligent Manufacturing 2014, 25, 849–866.
  • Li, B.; Li, J.; Tang, K.; Yao, X. Many-objective evolutionary algorithms: A survey. ACM Computing Surveys 2015, 48, Article 13, 13:1–13:35.
  • Jackiewicz, J. Optimization of geometrical structures of modern materials by using a hybrid evolution strategy. Computational Materials Science 2015, 15, 94–102.
  • Coello Coello, C.; Lamont, G.B.; van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer-Verlag US: New York, NY, 2007.
  • Yu, X.; Gen, M. Introduction to Evolutionary Algorithms; Springer-Verlag: London, 2010.
  • Zegard, T.; Paulino, G.H. GRAND - Ground structure based topology optimization for arbitrary 2D domains using MATLAB. Structural and Multidisciplinary Optimization 2014, 50, 861–882.
  • Hirano, Y. Application of Modelica to development of future new-concept vehicles. In 7th IFAC Symposium on Advances in Automotive Control, Kawabe, T. Ed.; The International Federation of Automatic Control: Tokyo, September 4–7, 2013, 428–433.
  • Roberts, N.; Dempsey, M.; Picarelli, A. Detailed powertrain dynamics modelling in Dymola – Modelica. In 7th IFAC Symposium on Advances in Automotive Control; Kawabe, T. Ed.; The International Federation of Automatic Control: Tokyo, Japan, September 4–7, 2013, 434–439.
  • Prokhorov, D.V. Toyota Prius HEV neurocontrol and diagnostics. Neural Networks 2008, 21, 458–465.
  • Toyota Prius - Power Split Device (PSD): http://eahart.com/prius/psd/
  • Puzyrewski, R.; Flaszyński, P. Hyperbolically shaped centrifugal compressor. Journal of Thermal Science 2003, 12, 214–218.
  • Nili-Ahmadabadi, M.; Hajilouy-Benisi, A.; Durali, M.; Ghadak, F. Investigation of a centrifugal compressor and study of the area ratio and TIP clearance effects on performance. Journal of Thermal Science 2008, 17, 314–323.
  • Chu, F.; Wang F.; Wang, X.; Zhang, S. A model for parameter estimation of multistage centrifugal compressor and compressor performance analysis using genetic algorithm. Science China Technological Sciences 2012, 55, 3163–3175.
  • Li, J.; Yin, Y.; Li, S.; Zhang, J. Numerical simulation investigation on centrifugal compressor performance of turbocharger. Journal of Mechanical Science and Technology 2013, 27, 1597–1601.
  • Townsend, V.; Urbanic, R.J. A systems approach to hybrid design: Fused deposition modeling and CNC machining. In Global Product Development; Bernard, A. Ed.; Springer-Verlag: Berlin, 2011; 711–720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.