1,185
Views
98
CrossRef citations to date
0
Altmetric
Reviews

Issues and strategies in composite fabrication via friction stir processing: A review

, &
Pages 239-261 | Received 03 Jan 2017, Accepted 22 Feb 2017, Published online: 11 Apr 2017

References

  • Cavaliere, P. Mechanical properties of friction stir processed 2618/Al2O3/20p metal matrix composite. Composites Part A: Applied Science and Manufacturing 2005, 36 (12), 1657–1665.
  • Joseph, S. High temperature metal matrix composites for future aerospace systems, in 24th Joint Propulsion Conference 1988, American Institute of Aeronautics and Astronautics.
  • Miracle, D.B. Metal matrix composites: From science to technological significance. Composites Science and Technology 2005, 65 (15–16), 2526–2540.
  • Lloyd, D.J. Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews 1994, 39 (1), 1–23.
  • Bains, P.S.; Sidhu, S.S.; Payal, H.S. Fabrication and machining of metal matrix composites: A review. Materials and Manufacturing Processes 2016, 31 (5), 553–573.
  • Mabhali, L.A.B.; Pityana, S.L.; Sacks, N. Laser surface alloying of aluminum (AA1200) with Ni and SiC powders. Materials and Manufacturing Processes 2010, 25 (12), 1397–1403.
  • Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. Laser-based surface modifications of aluminum and its alloys. Critical Reviews in Solid State and Materials Sciences 2016, 41 (2), 106–131.
  • Choo, S.-H.; Lee, S.; Kwon, S.-J. Surface hardening of a gray cast iron used for a diesel engine cylinder block using high-energy electron beam irradiation. Metallurgical and Materials Transactions A 1999, 30 (5), 1211–1221.
  • Shi, J.L.; Yan, H.G.; Su, B.; Chen, J.H.; Zhu, S.Q.; Chen, G. Preparation of a functionally gradient aluminum alloy metal matrix composite using the technique of spray deposition. Materials and Manufacturing Processes 2011, 26 (10), 1236–1241.
  • Sajjadi, S.A.; Ezatpour, H.R.; Torabi Parizi, M. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Materials & Design 2012, 34, 106–111.
  • Lu, Y.; Li, J.; Yang, J.; Li, X. The fabrication and properties of the squeeze-cast TiN/Al composites. Materials and Manufacturing Processes 2016, 31 (10), 1306–1310.
  • Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science 2001, 46 (6), 559–632.
  • Mishra, R.S., Ma, Z.Y.; Charit, I. Friction stir processing: A novel technique for fabrication of surface composite. Materials Science and Engineering: A 2003, 341 (1–2), 307–310.
  • W.M. Thomas, N.E.; Needham, J.C.; Nurch, M.G.; Temple-Smith, P.; Dawes, C. Friction Stir Butt Welding. G.B.: USA, 1991.
  • Mishra, R.S.; Mahoney, M.W.; McFadden, S.X.; Mara, N.A.; Mukherjee, A.K. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Materialia 1999, 42 (2), 163–168.
  • Berbon, P.B.; Bingel, W.H.; Mishra, R.S.; Bampton, C.C.; Mahoney, M.W. Friction stir processing: A tool to homogenize nanocomposite aluminum alloys. Scripta Materialia 2001, 44 (1), 61–66.
  • Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports 2005, 50 (1–2), 1–78.
  • McNelley, T.R.; Swaminathan, S.; Su, J.Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Materialia 2008, 58 (5), 349–354.
  • Patel, V.V.; Badheka, V.; Kumar, A. Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Materials and Manufacturing Processes 2016, 31 (12), 1573–1582.
  • Mishra, R.S.; M.M.W. Friction Stir Welding and Processing 2007: ASM International.
  • Gan, Y.; Solomon, D.; Reinbolt, M. Friction stir processing of particle reinforced composite materials. Materials 2010, 3 (1), 329.
  • Argade, G.R.; Kandasamy, K.; Panigrahi, S.K.; Mishra, R.S. Corrosion behavior of a friction stir processed rare-earth added magnesium alloy. Corrosion Science 2012, 58, 321–326.
  • Sun, N.; Apelian, D. Friction stir processing of aluminum cast alloys for high performance applications. JOM 2011, 63 (11), 44–50.
  • Barmouz, M.; Besharati Givi, M.K.; Seyfi, J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior. Materials Characterization 2011, 62 (1), 108–117.
  • Dehghani, K.; Mazinani, M. Forming nanocrystalline surface layers in copper using friction stir processing. Materials and Manufacturing Processes 2011, 26 (7), 922–925.
  • Dadashpour, M.; Mostafapour, A.; Yeşildal, R.; Rouhi, S. Effect of process parameter on mechanical properties and fracture behavior of AZ91C/SiO2 composite fabricated by FSP. Materials Science and Engineering: A 2016, 655, 379–387.
  • Shamsipur, A., Kashani-Bozorg, S.F.; Zarei-Hanzaki, A. The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surface and Coatings Technology 2011, 206 (6), 1372–1381.
  • Ghasemi-Kahrizsangi, A.; Kashani-Bozorg, S.F. Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surface and Coatings Technology 2012, 209, 15–22.
  • Ghasemi-Kahrizsangi, A.; Kashani-Bozorg, S.F.; Moshref-Javadi, M.; Sharififar, M. Friction stir processing of mild steel/Al2O3 nanocomposite: Modeling and experimental studies. Metallography, Microstructure, and Analysis 2015, 4 (2), 122–130.
  • Hashemi, R.; Hussain, G. Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: A comparison of tool geometries and number of passes. Wear 2015, 324–325, 45–54.
  • Azizieh, M.; Kokabi, A.H.; Abachi, P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Materials & Design 2011, 32 (4), 2034–2041.
  • Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Materials Science and Engineering: A 2006, 433 (1–2), 50–54.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M. Analysis of microstructural changes in enhancement of surface properties in sheet forming of Al alloys via friction stir processing. Materials Today: Proceedings 2016, in press.
  • Węglowski, M.S.; Dymek, S. Relationship between friction stir processing parameters and torque, temperature and the penetration depth of the tool. Archives of Civil and Mechanical Engineering 2013, 13 (2), 186–191.
  • Mahmoud, E.R.I.; Takahashi, M.; Shibayanagi, T.; Ikeuchi, K. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Science and Technology of Welding and Joining 2009, 14 (5), 413–425.
  • Langlade, C.; Roman, A.; Schlegel, D.; Gete, E.; Folea, M. Formation of a tribologically transformed surface (TTS) on AISI 1045 steel by friction stir processing. Materials and Manufacturing Processes 2016, 31 (12), 1565–1572.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M.; Sharma, S.K. Process parameters optimization for enhanced microhardness of AA 6061/SiC surface composites fabricated via friction stir processing (FSP). Materials Today: Proceedings 2016, 3 (10, Part B), 4151–4156.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M. Effect of Tool Plunge Depth on Reinforcement Particles Distribution in Surface Composite Fabrication via Friction Stir Processing. Defence Technology.
  • Wang, W.; Shi, Qing-y.; Liu, P.; Li, Hong-k.; Li, T. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. Journal of Materials Processing Technology 2009, 209 (4), 2099–2103.
  • Yang, M.; Xu, C.; Wu, C.; Lin, Kuo-c.; Chao, Y.; An, L. Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. Journal of Materials Science 2010, 45 (16), 4431–4438.
  • Mehta, K.P.; Badheka, V.J. Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Materials and Manufacturing Processes 2016, 31 (3), 255–263.
  • Asadi, P.; Faraji, G.; Besharati, M. Producing of AZ91/SiC composite by friction stir processing (FSP). The International Journal of Advanced Manufacturing Technology 2010, 51 (1–4), 247–260.
  • Chen, X.G.; da Silva, M.; Gougeon, P.; St-Georges, L. Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites. Materials Science and Engineering: A 2009, 518 (1–2), 174–184.
  • Iordachescu, M.; E.S.a.D.I. Fundamentals of the process and tools design: Friction stir processing of materials. Welding Equipment and Technology 2006, 17, 63–72.
  • Nandan, R.; DebRoy, T.; Bhadeshia, H.K.D.H. Recent advances in friction-stir welding – Process, weldment structure and properties. Progress in Materials Science 2008, 53 (6), 980–1023.
  • Dacheux, P.; Dubourg, L. Design and properties of FSW tools: A literature review. Proc. 6th Int. Symp. on ‘Friction Stir Welding’ 2006, 52 (4).
  • Reynolds, A.P.; Tang, W. Alloy, tool geometry, and process parameter effects on friction stir weld energies and resultant FSW joint properties. Friction stir welding and processing, ed. M.W.M. K.K. Jata, R.S. Mishra, S.L. Semiatin and D.P. Field 2001: TMS.
  • Prado, R.A.; Murr, L.E.; Shindo, D.J.; Soto, K.F. Tool wear in the friction-stir welding of aluminum alloy 6061 + 20% Al2O3: A preliminary study. Scripta Materialia 2001, 45 (1), 75–80.
  • Vijayavel, P.; Balasubramanian, V.; Sundaram, S. Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites. Materials & Design 2014, 57, 1–9.
  • Zhang, Y.N.; Cao, X.; Larose, S.; Wanjara, P. Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly 2012, 51 (3), 250–261.
  • Mahmoud, E.R.I.; Takahashi, M.; Shibayanagi, T.; Ikeuchi, K. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear 2010, 268 (9–10), 1111–1121.
  • Elangovan, K.; Balasubramanian, V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials & Design 2008, 29 (2), 362–373.
  • Elangovan, K.; Balasubramanian, V. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology 2008, 200 (1–3), 163–175.
  • Eftekharinia, H.; Amadeh, A.A.; Khodabandeh, A.; Paidar, M. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Metals 2016, 1–7. doi:10.1007/s12598-016-0691-x
  • Guerra, M.; Schmidt, C.; McClure, J.C.; Murr, L.E.; Nunes, A.C. Flow patterns during friction stir welding. Materials Characterization 2002, 49 (2), 95–101.
  • Shojaeefard, M.H.; Akbari, M.; Khalkhali, A.; Asadi, P. Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B4C/aluminum composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 0, 1464420716642471.
  • Shojaeefard, M.H.; Akbari, M.; Asadi, P.; Khalkhali, A. The effect of reinforcement type on the microstructure, mechanical properties, and wear resistance of A356 matrix composites produced by FSP. The International Journal of Advanced Manufacturing Technology 2016, 1–17. doi:10.1007/s00170-016-9853-0
  • Yu, Z.; Zhang, W.; Choo, H.; Feng, Z. Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool. Metallurgical and Materials Transactions A 2012, 43 (2), 724–737.
  • Siddiquee, A.N.; Pandey, S. Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. The International Journal of Advanced Manufacturing Technology 2014, 73 (1), 479–486.
  • Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T. Review: Friction stir welding tools. Science and Technology of Welding and Joining 2011, 16 (4), 325–342.
  • Çam, G. Friction stir welded structural materials: Beyond Al-alloys. International Materials Reviews 2011, 56 (1), 1–48.
  • Najafi, M.; Nasiri, A.M.; Kokabi, A.H. Microstructure and hardness of friction stir processed AZ31 with SiCP. International Journal of Modern Physics B 2008, 22 (18n19), 2879–2885.
  • Yuvaraj, N.; Aravindan, S.; Vipin Wear characteristics of Al5083 surface hybrid nano-composites by friction stir processing. Transactions of the Indian Institute of Metals 2016, 1–19. doi:10.1007/s12666-016-0905-9
  • Rejil, C.M.; Dinaharan, I.; Vijay, S.J.; Murugan, N. Microstructure and sliding wear behavior of AA6360/(TiC +B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Materials Science and Engineering: A 2012, 552, 336–344.
  • Sathiskumar, R.; Murugan, N.; Dinaharan, I.; Vijay, S.J. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Materials Characterization 2013, 84, 16–27.
  • Du, Z.; Tan, M.J.; Guo, J.F.; Bi, G.; Wei, J. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP). Materials Science and Engineering: A 2016, 667, 125–131.
  • Kashani-Bozorg, S.F.; Samiee, M.; Honarbakhsh-Raouf, A. Fabrication of Al/AlN nano-composite layers by friction stir processing of 6061 Al-T6 substrate. Surface and Interface Analysis 2015, 47 (2), 227–238.
  • Moghaddas, M.A.; Kashani-Bozorg, S.F. Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing. Materials Science and Engineering: A 2013, 559, 187–193.
  • Eskandari, H.; Taheri, R.; Khodabakhshi, F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties. Materials Science and Engineering: A 2016, 660, 84–96.
  • Narimani, M.; Lotfi, B.; Sadeghian, Z. Investigating the microstructure and mechanical properties of Al-TiB2 composite fabricated by friction stir processing (FSP). Materials Science and Engineering: A 2016, 673, 436–442.
  • Zhao, Y.; Kai, X.; Chen, G.; Lin, W.; Wang, C. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite. Progress in Natural Science: Materials International 2016, 26 (1), 69–77.
  • Thapliyal, S.; Dwivedi, D.K. Microstructure evolution and tribological behavior of the solid lubricant based surface composite of cast nickel aluminum bronze developed by friction stir processing. Journal of Materials Processing Technology 2016, 238, 30–38.
  • Lucie, B.J.; Leonard, L.Y.; Edward, S.; Sivaram, A.; Mishra, R.S. Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology 2006, 17 (12), 3081.
  • Farnoush, H.; Sadeghi, A.; Abdi Bastami, A.; Moztarzadeh, F.; Aghazadeh Mohandesi, J. An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition. Ceramics International 2013, 39 (2), 1477–1483.
  • Izadi, H. in Proceedings of the 9th International Conference on Trends in Welding Research. 2012, ASM.
  • Dinaharan, I.; Sathiskumar, R.; Murugan, N. Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing. Journal of Materials Research and Technology 2016, 5 (4), 302–316.
  • Lu, D.; Jiang, Y.; Zhou, R. Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing. Wear 2013, 305 (1–2), 286–290.
  • Raaft, M.; Mahmoud, T.S.; Zakaria, H.M.; Khalifa, T.A. Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Materials Science and Engineering: A 2011, 528 (18), 5741–5746.
  • Lim, D.K.; Shibayanagi, T.; Gerlich, A.P. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Materials Science and Engineering: A 2009, 507 (1–2), 194–199.
  • Izadi, H.; Gerlich, A.P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 2012, 50 (12), 4744–4749.
  • Liu, Q.; Ke, L.; Liu, F.; Huang, C.; Xing, L. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials & Design 2013, 45, 343–348.
  • Devaraju, A.; Kumar, A.; Kumaraswamy, A.; Kotiveerachari, B. Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing. Journal of Materials Research and Technology 2013, 2 (4), 362–369.
  • Devaraju, A.; Kumar, A.; Kotiveerachari, B. Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Transactions of Nonferrous Metals Society of China 2013, 23 (5), 1275–1280.
  • Devaraju, A.; Kumar, A.; Kotiveerachari, B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Materials & Design 2013, 45, 576–585.
  • Devaraju, A.; Kumar, A.; Kumaraswamy, A.; Kotiveerachari, B. Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Materials & Design 2013, 51, 331–341.
  • Mostafapour Asl, A.; Khandani, S.T. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method. Materials Science and Engineering: A 2013, 559, 549–557.
  • Narimani, M.; Lotfi, B.; Sadeghian, Z. Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surface and Coatings Technology 2016, 285, 1–10.
  • Basavarajappa, S.; Chandramohan, G.; Mahadevan, A.; Thangavelu, M.; Subramanian, R.; Gopalakrishnan, P. Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear 2007, 262 (7–8), 1007–1012.
  • Suresha, S.; Sridhara, B.K. Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites. Materials & Design 2010, 31 (9), 4470–4477.
  • Devaraju, A.; K.A., Kotiveerachari, B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Materials and Design 2013, 45, 576–585.
  • Palanivel, R.; Dinaharan, I.; Laubscher, R.F.; Davim, J.P. Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing. Materials & Design 2016, 106, 195–204.
  • El-Kady, O.; Fathy, A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Materials & Design 2014, 54, 348–353.
  • Thangarasu, A.; Murugan, N.; Dinaharan, I.; Vijay, S.J. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Archives of Civil and Mechanical Engineering 2015, 15 (2), 324–334.
  • Sahraeinejad, S.; Izadi, H.; Haghshenas, M.; Gerlich, A.P. Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters. Materials Science and Engineering: A 2015, 626, 505–513.
  • Kouzeli, M.; Mortensen, A. Size dependent strengthening in particle reinforced aluminium. Acta Materialia 2002, 50 (1), 39–51.
  • Asadi, P.; Faraji, G.; Masoumi, A.; Besharati Givi, M.K. Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes. Metallurgical and Materials Transactions A 2011, 42 (9), 2820–2832.
  • Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Gerlich, A.P. Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Materials Science and Engineering: A 2015, 631, 75–85.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A. N.; Srivastava, M. Investigating effects of groove dimensions on microstructure and mechanical properties of AA6063/SiC surface composites produced by friction stir processing. Transactions of Indian Institute of Metals 2017, 70 (3), 809–816.
  • Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A 2009, 500 (1–2), 84–91.
  • Rios, P.R. Overview no. 62. Acta Metallurgica 1987, 35 (12), 2805–2814.
  • Miranda, R.M.; Santos, T.G.; Gandra, J.; Lopes, N.; Silva, R.J.C. Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys. Journal of Materials Processing Technology 2013, 213 (9), 1609–1615.
  • Kurt, A.; Uygur, I.; Cete, E. Surface modification of aluminium by friction stir processing. Journal of Materials Processing Technology 2011, 211 (3), 313–317.
  • Li, C.; Feng, X.; Shen, Y.; Chen, W. Preparation of Al2O3/TiO2 particle-reinforced copper through plasma spraying and friction stir processing. Materials & Design 2016, 90, 922–930.
  • Zahmatkesh, B.; Enayati, M.H. A novel approach for development of surface nanocomposite by friction stir processing. Materials Science and Engineering: A 2010, 527 (24–25), 6734–6740.
  • Anvari, S.R.; Karimzadeh, F.; Enayati, M.H. A novel route for development of Al–Cr–O surface nano-composite by friction stir processing. Journal of Alloys and Compounds 2013, 562, 48–55.
  • Mazaheri, Y.; Karimzadeh, F.; Enayati, M.H. A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. Journal of Materials Processing Technology 2011, 211 (10), 1614–1619.
  • Dolatkhah, A.; Golbabaei, P.; Besharati Givi, M.K.; Molaiekiya, F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Materials & Design 2012, 37, 458–464.
  • Sharifitabar, M.; Sarani, A.; Khorshahian, S.; Shafiee Afarani, M. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Materials & Design 2011, 32 (8–9), 4164–4172.
  • Salehi, M.; Saadatmand, M.; Aghazadeh Mohandesi, J. Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Transactions of Nonferrous Metals Society of China 2012, 22 (5), 1055–1063.
  • Bahrami, M.; Besharati Givi, M.K.; Dehghani, K.; Parvin, N. On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Materials & Design 2014, 53, 519–527.
  • Bahrami, M.; Dehghani, K.; Besharati Givi, M.K. A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Materials & Design 2014, 53, 217–225.
  • Arora, H.S.; Singh, H.; Dhindaw, B.K., Grewal, H.S. Some investigations on friction stir processed zone of AZ91 alloy. Transactions of the Indian Institute of Metals 2012, 65 (6), 735–739.
  • Akramifard, H.R.; Shamanian, M.; Sabbaghian, M.; Esmailzadeh, M. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design 2014, 54, 838–844.
  • Huang, Y.; Wang, T.; Guo, W.; Wan, L.; Lv, S. Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing. Materials & Design 2014, 59, 274–278.
  • Mazaheri, Y.; Karimzadeh, F.; Enayati, M.H. Tribological behavior of A356/Al2O3 surface nanocomposite prepared by friction stir processing. Metallurgical and Materials Transactions A 2014, 45 (4), 2250–2259.
  • Hodder, K.J.; Izadi, H.; McDonald, A.G.; Gerlich, A.P. Fabrication of aluminum–alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Materials Science and Engineering: A 2012, 556, 114–121.
  • Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Hanzaki, A.Z. Wear assessment of Al/Al2O3 nano-composite surface layer produced using friction stir processing. Wear 2011, 270 (5–6), 403–412.
  • Avettand-Fènoël, M.N.; Simar, A.; Shabadi, R.; Taillard, R.; de Meester, B. Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing. Materials & Design 2014, 60, 343–357.
  • Choi, D.-H.; Kim, Y.-H.; Ahn, B.-W.; Kim, Y.-Il.; Jung, S.-B. Microstructure and mechanical property of A356 based composite by friction stir processing. Transactions of Nonferrous Metals Society of China 2013, 23 (2), 335–340.
  • Mahmoud, E.R.I.; Ikeuchi, K.; Takahashi, M. Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing. Science and Technology of Welding and Joining 2008, 13 (7), 607–618.
  • Sharma, V.; Gupta, Y.; Kumar, B.V.M.; Prakash, U. Friction stir processing strategies for uniform distribution of reinforcement in a surface composite. Materials and Manufacturing Processes 2016, 31 (10), 1384–1392.
  • Li, B.; Shen, Y.; Luo, L.; Hu, W. Fabrication of TiCp/Ti–6Al–4V surface composite via friction stir processing (FSP): Process optimization, particle dispersion-refinement behavior and hardening mechanism. Materials Science and Engineering: A 2013, 574, 75–85.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M. Distribution of reinforcement particles in surface composite fabrication via friction stir processing: Suitable strategy. Materials and Manufacturing Processes 2017. doi:10.1080/10426914.2017.1303147
  • Dialami, N.; M.C., Cervera, M.; Agelet de Saracibar, C. Challenges in thermo-mechanical analysis of friction stir welding processes. Archives of Computational Methods in Engineering 2017, 24 (1), 189–225.
  • Heydarian, A.; Dehghani, K.; Slamkish, T. Optimizing powder distribution in production of surface nano-composite via friction stir processing. Metallurgical and Materials Transactions B 2014, 45 (3), 821–826.
  • Reynolds, A.P. Flow visualization and simulation in FSW. Scripta Materialia 2008, 58 (5), 338–342.
  • Hwang, Y.-M.; Kang, Z.-W.; Chiou, Y.-C.; Hsu, H.-H. Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. International Journal of Machine Tools and Manufacture 2008, 48 (7–8), 778–787.
  • Zohoor, M., Besharati Givi, M.K.; Salami, P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Materials & Design 2012, 39, 358–365.
  • Asadi, P.; Givi, M.K.B.; Parvin, N.; Araei, A.; Taherishargh, M.; Tutunchilar, S. On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. The International Journal of Advanced Manufacturing Technology 2012, 63 (9–12), 987–997.
  • Bahrami, M.; Farahmand Nikoo, M.; Besharati Givi, M.K. Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Materials Science and Engineering: A 2015, 626, 220–228.
  • Ma, Z.Y. Friction stir processing technology: A review. Metallurgical and Materials Transactions A 2008, 39 (3), 642–658.
  • Feng, A.H.; Xiao, B.L.; Ma, Z.Y. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Composites Science and Technology 2008, 68 (9), 2141–2148.
  • Colligan, K. Material flow behavior during friction stir welding of aluminum. Welding Journal Supplies 1999, 78 (7), 229s–237s.
  • Lorrain, O.; Favier, V.; Zahrouni, H.; Lawrjaniec, D. Understanding the material flow path of friction stir welding process using unthreaded tools. Journal of Materials Processing Technology 2010, 210 (4), 603–609.
  • Khayyamin, D.; Mostafapour, A.; Keshmiri, R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Materials Science and Engineering: A 2013, 559, 217–221.
  • Abbasi Gharacheh, M.; Kokabi, A.H.; Daneshi, G.H.; Shalchi, B.; Sarrafi, R. The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds. International Journal of Machine Tools and Manufacture 2006, 46 (15), 1983–1987.
  • Chang, C.I.; W.Y.; Pei, H.R.; Lee, C.J.; Du, X.H.; Huang, J.C. Microstructure and mechanical properties of Nano-ZrO2 and Nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated by friction stir processing. Key Engineering Materials 2007, (351), 114–119.
  • Faraji, G.; Asadi, P. Characterization of AZ91/alumina nanocomposite produced by FSP. Materials Science and Engineering: A 2011, 528 (6), 2431–2440.
  • Lee, C.J.; Huang, J.C.; Hsieh, P.J. Mg based nano-composites fabricated by friction stir processing. Scripta Materialia 2006, 54 (7), 1415–1420.
  • Ratna Sunil, B.; Sampath Kumar, T.S.; Chakkingal, U.; Nandakumar, V.; Doble, M. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: A solid state processing for biodegradable metal matrix composites. Journal of Materials Science: Materials in Medicine 2013, 25 (4), 975–988.
  • Hussain, G.; Hashemi, R.; Hashemi, H.; Al-Ghamdi, K.A. An experimental study on multi-pass friction stir processing of Al/TiN composite: Some microstructural, mechanical, and wear characteristics. The International Journal of Advanced Manufacturing Technology 2015, 84 (1), 533–546.
  • Prakash, T.; Sivasankaran, S.; Sasikumar, P. Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with Al2O3/0.5 Gr hybrid surface nanocomposite. Arabian Journal for Science and Engineering 2015, 40 (2), 559–569.
  • Asadi, P.; Faraji, G.; Besharati, M.K. Producing of AZ91/SiC composite by friction stir processing (FSP). The International Journal of Advanced Manufacturing Technology 2010, 51 (1), 247–260.
  • Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Materials Science and Engineering: A 2006, 419 (1–2), 344–348.
  • El-Rayes, M.M.; El-Danaf, E.A. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. Journal of Materials Processing Technology 2012, 212 (5), 1157–1168.
  • Karthikeyan, L.; Senthilkumar, V.S.; Padmanabhan, K.A. On the role of process variables in the friction stir processing of cast aluminum A319 alloy. Materials & Design 2010, 31 (2), 761–771.
  • Alavi Nia, A.; Nourbakhsh, S.H. Microstructure and mechanical properties of AZ31/SiC and AZ31/CNT composites produced by friction stir processing. Transactions of the Indian Institute of Metals 2016, 69 (7), 1435–1442.
  • Barmouz, M.; Asadi, P.; Besharati Givi, M.K.; Taherishargh, M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Materials Science and Engineering: A 2011, 528 (3), 1740–1749.
  • Puviyarasan, M.; Kumar, V.S.S. Optimization of friction stir process parameters in fabricating AA6061/SiCp composites. Procedia Engineering 2012, 38, 1094–1103.
  • Qu, J.; Xu, H.; Feng, Z.; Frederick, D.A.; An, L.; Heinrich, H. Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing. Wear 2011, 271 (9–10), 1940–1945.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M. Fabrication of AA 6063/SiC surface composites via friction stir processing. In India International Science Festival: Young Scientists’ Meet Department of Science and Technology, Government of India. 2015, New Delhi.
  • Shahraki, S.; Khorasani, S.; Abdi Behnagh, R.; Fotouhi, Y.; Bisadi, H. Producing of AA5083/ZrO2 nanocomposite by friction stir processing (FSP). Metallurgical and Materials Transactions B 2013, 44 (6), 1546–1553.
  • Sarkari Khorrami, M.; Kazeminezhad, M.; Kokabi, A.H. The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum. Materials Science and Engineering: A 2014, 602, 110–118.
  • Soleymani, S.; Abdollah-zadeh, A.; Alidokht, S.A. Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing. Wear 2012, 278–279, 41–47.
  • Zohoor, M.; Besharati Givi, M.K.; Salami, P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Materials & Design 2012, 39, 358–365.
  • Alidokht, S.A.; Abdollah-zadeh, A.; Soleymani, S.; Assadi, H. Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Materials & Design 2011, 32 (5), 2727–2733.
  • Choi, K.; Seo, J.; Bae, D.; Choi, H. Mechanical properties of aluminum-based nanocomposite reinforced with fullerenes. Transactions of Nonferrous Metals Society of China 2014, 24 (Supplement 1), s47–s52.
  • Abbasi Gharacheh, M.; Kokabi, A.H.; Daneshi, G.H.; Shalchi, B.; Sarrafi, R. The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds. International Journal of Machine Tools and Manufacture 2006, 46 (15), 1983–1987.
  • Morisada, Y.; Fujii, H.; Nagaoka, T.; Nogi, K.; Fukusumi, M. Fullerene/A5083 composites fabricated by material flow during friction stir processing. Composites Part A: Applied Science and Manufacturing 2007, 38 (10), 2097–2101.
  • Abbasi, M.; Bagheri, B.; Dadaei, M.; Omidvar, H.R.; Rezaei, M. The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface. The International Journal of Advanced Manufacturing Technology 2015, 77 (9), 2051–2058.
  • Khosravi, J.; Givi, M.K.B.; Barmouz, M.; Rahi, A. Microstructural, mechanical, and thermophysical characterization of Cu/WC composite layers fabricated via friction stir processing. The International Journal of Advanced Manufacturing Technology 2014, 74 (5), 1087–1096.
  • Sathiskumar, R.; Murugan, N.; Dinaharan, I.; Vijay, S.J. Prediction of mechanical and wear properties of copper surface composites fabricated using friction stir processing. Materials & Design 2014, 55, 224–234.
  • Sarmadi, H.; Kokabi, A.H.; Seyed Reihani, S.M. Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear 2013, 304 (1–2), 1–12.
  • Sharifitabar, M.; Kashefi, M.; Khorshahian, S. Effect of friction stir processing pass sequence on properties of Mg–ZrSiO4–Al2O3 surface hybrid micro/nano-composites. Materials & Design 2016, 108, 1–7.
  • Kim, C.-S.; Sohn, Il.; Nezafati, M.; Ferguson, J.B.; Schultz, B.F.; Bajestani-Gohari, Z.; Rohatgi, P.K.; Cho, K. Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). Journal of Materials Science 2013, 48 (12), 4191–4204.
  • Zhang, Z.; Chen, D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering: A 2008, 483–484, 148–152.
  • Zhang, Z.; Chen, D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering: A 2008, 483–484, 148–152.
  • Sanaty-Zadeh, A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Materials Science and Engineering: A 2012, 531, 112–118.
  • Hossein Izadi, R.S.; Gerlich, Adrian P. Grain growth behavior and hall–petch strengthening in friction stir processed Al 5059. Metallurgical and Materials Transactions A 2014, 45 (12), 5635–5644.
  • Sun, K.; Shi, Q.Y.; Sun, Y.J.; Chen, G.Q. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Materials Science and Engineering: A 2012, 547, 32–37.
  • Guo, J.F.; Liu, J.; Sun, C.N.; Maleksaeedi, S.; Bi, G.; Tan, M.J.; Wei, J. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Materials Science and Engineering: A 2014, 602, 143–149.
  • Yuvaraj, N.; Aravindan, S.; Vipin Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. Journal of Materials Research and Technology 2015, 4 (4), 398–410.
  • Navazani, M.; Dehghani, K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing. Journal of Materials Processing Technology 2016, 229, 439–449.
  • Faraji, G.; Dastani, O.; Mousavi, S.A.A.A. Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. Journal of Materials Engineering and Performance 2011, 20 (9), 1583–1590.
  • Zhao, Y.; Huang, X.; Li, Q.; Huang, J.; Yan, K. Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy. The International Journal of Advanced Manufacturing Technology 2015, 78 (9), 1437–1443.
  • Jafari, J., Givi, M.K.B.; Barmouz, M. Mechanical and microstructural characterization of Cu/CNT nanocomposite layers fabricated via friction stir processing. The International Journal of Advanced Manufacturing Technology 2015, 78 (1), 199–209.
  • Mohammadzadeh Jamalian, H.; Ramezani, H.; Ghobadi, H.; Ansari, M.; Yari, S.; Besharati Givi, M.K. Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints. Journal of Manufacturing Processes 2016, 21, 180–189.
  • Balakrishna, B.T.; V.S.A. Strengthening mechanisms in alloys. Proc. Indian Acad. Sci. (Eng. Sci.) 1980, 3 (4), 275–296.
  • Ibrahim, I.A.; Mohamed, F.A.; Lavernia, E.J. Particulate reinforced metal matrix composites: A review. Journal of Materials Science 1991, 26 (5), 1137–1156.
  • Bauri, R.; Yadav, D.; Shyam Kumar, C.N.; Balaji, B. Tungsten particle reinforced Al 5083 composite with high strength and ductility. Materials Science and Engineering: A 2015, 620, 67–75.
  • Liu, P.; Shi, Q.-y.; Zhang, Y.-b. Microstructural evaluation and corrosion properties of aluminium matrix surface composite adding Al-based amorphous fabricated by friction stir processing. Composites Part B: Engineering 2013, 52, 137–143.
  • Amra, M.; Ranjbar, K.; Dehmolaei, R. Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites. Journal of Materials Engineering and Performance 2015, 24 (8), 3169–3179.
  • Dinaharan, I. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing. Journal of Asian Ceramic Societies 2016, 4 (2), 209–218.
  • Hosseini, S.A.; Ranjbar, K.; Dehmolaei, R.; Amirani, A.R. Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing. Journal of Alloys and Compounds 2015, 622, 725–733.
  • Salehi, M.; Farnoush, H.; Heydarian, A.; Aghazadeh Mohandesi, J. Improvement of mechanical properties in the functionally graded aluminum matrix nanocomposites fabricated via a novel multistep friction stir processing. Metallurgical and Materials Transactions B 2014, 46 (1), 20–29.
  • Saadatmand, M.; Mohandesi, J.A. Modeling tensile strength of Al–SiC functionally graded composite produced using friction stir processing (FSP). Transactions of the Indian Institute of Metals 2015, 68 (2), 319–325.
  • Saadatmand, M.; Aghazadeh Mohandesi, J. Optimization of mechanical and wear properties of functionally graded Al6061/SiC nanocomposites produced by friction stir processing (FSP). Acta Metallurgica Sinica (English Letters) 2015, 28 (5), 584–590.
  • Gandra, J.; Vigarinho, P.; Pereira, D.; Miranda, R.M.; Velhinho, A.; Vilaça, P. Wear characterization of functionally graded Al–SiC composite coatings produced by friction surfacing. Materials & Design 2013, 52, 373–383.
  • Salehi, M.; Farnoush, H.; Mohandesi, J.A. Fabrication and characterization of functionally graded Al–SiC nanocomposite by using a novel multistep friction stir processing. Materials & Design 2014, 63, 419–426.
  • Gandra, J.; Miranda, R.; Vilaça, P.; Velhinho, A.; Teixeira, J.P. Functionally graded materials produced by friction stir processing. Journal of Materials Processing Technology 2011, 211 (11), 1659–1668.
  • Rosso, M. Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology 2006, 175 (1–3), 364–375.
  • Tjong, S.C.; Ma, Z.Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R: Reports 2000, 29 (3–4), 49–113.
  • Zhang, Q.; Xiao, B.L.; Wang, D.; Ma, Z.Y. Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing. Materials Chemistry and Physics 2011, 130 (3), 1109–1117.
  • Hsu, C.J.; Chang, C.Y.; Kao, P.W.; Ho, N.J.; Chang, C.P. Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Materialia 2006, 54 (19), 5241–5249.
  • Chen, Y.; Chung, D.D.L. In situ Al-TiB composite obtained by stir casting. Journal of Materials Science 31 (2), 311–315.
  • Tong, X.C.; Fang, H.S. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: Part I. Microstructural evolution. Metallurgical and Materials Transactions A 29 (3), 875–891.
  • Birol, Y. In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium. Journal of Alloys and Compounds 2008, 454 (1–2), 110–117.
  • Feng, C.F.; Froyen, L. Microstructures of in situ Al/TiB2 MMCs prepared by a casting route. Journal of Materials Science 35 (4), 837–850.
  • Tee, K.L.; Lu, L.; Lai, M.O. Synthesis of in situ Al–TiB2 composites using stir cast route. Composite Structures 1999, 47 (1–4), 589–593.
  • Watson, I.G.; Forster, M.F.; Lee, P.D.; Dashwood, R.J.; Hamilton, R.W.; Chirazi, A. Investigation of the clustering behaviour of titanium diboride particles in aluminium. Composites Part A: Applied Science and Manufacturing 2005, 36 (9), 1177–1187.
  • Herbert, A.M.; Sarkar, C.; Mitra, R.; Chakraborty, M. Microstructural evolution, hardness, and alligatoring in the mushy state rolled Cast Al-4.5Cu alloy and in-situ Al4.5Cu-5TiB2 composite. Metallurgical and Materials Transactions A 2007, 38 (9), 2110–2126.
  • Hsu, C.J.; Kao, P.W.; Ho, N.J. Ultrafine-grained Al–Al2Cu composite produced in situ by friction stir processing. Scripta Materialia 2005, 53 (3), 341–345.
  • Zhang, Q.; Xiao, B.L.; Wang, Q.Z.; Ma, Z.Y. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Materials Letters 2011, 65 (13), 2070–2072.
  • Barmouz, M.; Givi, M.K.B. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior. Composites Part A: Applied Science and Manufacturing 2011, 42 (10), 1445–1453.
  • Lee, I.S.; Kao, P.W.; Ho, N.J. Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing. Intermetallics 2008, 16 (9), 1104–1108.
  • Chen, C.F.; Kao, P.W.; Chang, L.W.; Ho, N.J. Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in-situ composite produced by friction stir processing. Metallurgical and Materials Transactions A 2010, 41 (2), 513–522.
  • You, G.L.; Ho, N.J.; Kao, P.W. In-situ formation of Al2O3 nanoparticles during friction stir processing of AlSiO2 composite. Materials Characterization 2013, 80, 1–8.
  • Zhang, Q.; Xiao, B.L.; Xue, P.; Ma, Z.Y. Microstructural evolution and mechanical properties of ultrafine grained Al3Ti/Al–5.5Cu composites produced via hot pressing and subsequent friction stir processing. Materials Chemistry and Physics 2012, 134 (1), 294–301.
  • Chuang, C.H.; Huang, J.C.; Hsieh, P.J. Using friction stir processing to fabricate MgAlZn intermetallic alloys. Scripta Materialia 2005, 53 (12), 1455–1460.
  • Heurtier, P.D.C.; Montheillet, F. A thermomechanical analysis of the friction stir welding process. Materials Science Forum 2002, 396–402, 1537–1542.
  • Ke, L.; Huang, C.; Xing, L.; Huang, K. Al–Ni intermetallic composites produced in situ by friction stir processing. Journal of Alloys and Compounds 2010, 503 (2), 494–499.
  • Khodabakhshi, F.; Simchi, A.; Kokabi, A.H.; Gerlich, A.P.; Nosko, M. Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO2 nanocomposites. Materials & Design 2014, 63, 30–41.
  • Tutunchilar, S.; Haghpanahi, M.; Besharati Givi, M.K.; Asadi, P.; Bahemmat, P. Simulation of material flow in friction stir processing of a cast Al–Si alloy. Materials & Design 2012, 40, 415–426.
  • Tjong, S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Advanced Engineering Materials 2007, 9 (8), 639–652.
  • Barmouz, M.; Seyfi, J.; Besharati Givi, M.K.; Hejazi, I.; Davachi, S.M. A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Materials Science and Engineering: A 2011, 528 (6), 3003–3006.
  • Azarsa, E.; Mostafapour, A. On the feasibility of producing polymer–metal composites via novel variant of friction stir processing. Journal of Manufacturing Processes 2013, 15 (4), 682–688.
  • Farshbaf Zinati, R.; Razfar, M.R.; Nazockdast, H. Numerical and experimental investigation of FSP of PA 6/MWCNT composite. Journal of Materials Processing Technology 2014, 214 (11), 2300–2315.
  • Farshbaf Zinati, R. Experimental evaluation of ultrasonic-assisted friction stir process effect on in situ dispersion of multi-walled carbon nanotubes throughout polyamide 6. The International Journal of Advanced Manufacturing Technology 2015, 81 (9), 2087–2098.
  • Hangai, Y.; Utsunomiya, T. Fabrication of porous aluminum by friction stir processing. Metallurgical and Materials Transactions A 2009, 40 (2), 275–277.
  • Hangai, Y.; Koyama, S.; Hasegawa, M.; Utsunomiya, T. Fabrication of aluminum foam/dense steel composite by friction stir welding. Metallurgical and Materials Transactions A 2010, 41 (9), 2184–2186.
  • Hangai, Y.; Utsunomiya, T.; Hasegawa, M. Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. Journal of Materials Processing Technology 2010, 210 (2), 288–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.