382
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Strategical parametric investigation on manufacturing of Al–Mg–Zn–Cu alloy surface composites using FSP

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 534-545 | Received 30 Jan 2017, Accepted 20 Jun 2017, Published online: 29 Aug 2017

References

  • Santos, T. G.; Miranda, R.; Vilaça, P.; Teixeira, J. P. Modification of Electrical Conductivity by Friction Stir Processing of Aluminum Alloys. Int. J. Adv. Manuf. Technol. 2011, 57(5–8), 511–519. DOI:10.1007/s00170-011-3308-4.
  • Hulbert, D.; Fuller, C.; Mahoney, M.; London, B. The Mechanical and Thick Section Bending Behavior of Friction Stir Processed Aluminum plate. Scr. Mater. 2007, 57(3), 269–272.
  • Ma, Z. Friction Stir Processing Technology: A Review. Metall. Mater. Trans. A 2008, 39(3), 642–658. DOI:10.1007/s11661-007-9459-0.
  • Charit, I.; Mishra, R. S. Low Temperature Superplasticity in a Friction-Stir-Processed Ultrafine grained Al–Zn–Mg–Sc Alloy. Acta Mater. 2005, 53(15), 4211–4223.
  • Mishra, R. S.; Mahoney, M. W. Friction Stir Welding and Processing. Materials park, Ohio: ASM International, 2007; ISBN 087170840X.
  • Lee, C.; Li, H.; Chandel, R. Vacuum-Free Diffusion Bonding of Aluminium Metal Matrix Composite. J. Mater. Pro. Technol. 1999, 89, 326–330.
  • Mishra, R. S.; Mahoney, M. W. Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys. Mater. Sci. Forum 2001, 357–359, 507–514.
  • Mishra, R. S.; Ma, Z.; Charit, I. Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite. Mater. Sci. Eng. A 2003, 341(1), 307–310.
  • Sharma, V.; Gupta, Y.; Kumar, B. M.; Prakash, U. Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite. Mater. Manuf. Processes 2016, 31(10), 1384–1392. DOI:10.1080/10426914.2015.1103869.
  • Sun, N.; Apelian, D. Composite Fabrication in Cast Al A206 Via Friction Stir Processing. Int. J. Cast Met. Res. 2015, 28(2), 72–80.
  • Khodabakhshi, F.; Simchi, A.; Kokabi, A.; Sadeghahmadi, M.; Gerlich, A. Reactive Friction stir Processing of AA 5052–TiO2 Nanocomposite: Process–Microstructure–Mechanical Characteristics. Mat. Sci. Technol. 2015, 31(4), 426–435.
  • Hussain, G.; Hashemi, R.; Hashemi, H.; Al-Ghamdi, K. A. An Experimental Study on Multi-Pass Friction Stir Processing of Al/TiN Composite: Some Microstructural, Mechanical, and Wear Characteristics. Int. J. Adv. Manuf. Technol. 2016, 84(1–4), 533–546.
  • Dehghani, K.; Mazinani, M. Forming Nanocrystalline Surface Layers in Copper Using Friction Stir Processing. Mat. Manuf. Processes 2011, 26(7), 922–925.
  • Barmouz, M.; Asadi, P.; Givi, M. B.; Taherishargh, M. Investigation of Mechanical Properties of Cu/SiC Composite Fabricated by FSP: Effect of SiC Particles’ Size and Volume Fraction. Mat. Sci. Eng. A 2011, 528(3), 1740–1749.
  • Ahmadkhaniha, D.; Heydarzadeh Sohi, M.; Zarei-Hanzaki, A. Optimisation of Friction Stir Processing Parameters to Produce Sound and Fine Grain Layers in Pure Magnesium. Sci. Technol. Weld. Joining 2014, 19(3), 235–241.
  • Jamshidijam, M.; Akbari-Fakhrabadi, A.; Masoudpanah, S. M.; Hasani, G. H.; Mangalaraja, R. V. Wear Behavior of Multiwalled Carbon Nanotube/AZ31 Composite Obtained by Friction Stir Processing. Tribol. Trans. 2013, 56(5), 827–832.
  • Asadi, P.; Givi, M. B.; Parvin, N.; Araei, A.; Taherishargh, M.; Tutunchilar, S. On the Role of Cooling and Tool Rotational Direction on Microstructure and Mechanical Properties of Friction Stir Processed AZ91. Int. J. Adv. Manuf. Technol. 2012, 63(9–12), 987–997.
  • Faraji, G.; Asadi, P. Characterization of AZ91/Alumina Nanocomposite Produced by FSP. Mater. Sci. Eng. A 2011, 528(6), 2431–2440.
  • Komarasamy, M.; Mishra, R. S.; Baumann, J. A.; Grant, G.; Hovanski, Y. Processing, Microstructure and Mechanical Property Correlation in Al‐B4C Surface Composite Produced via Friction Stir Processing. Frict. Stir Weld. Process. VII; Cham, Switzerland: Springer International Publishing, 2013, 39–46.
  • Liu, Q.; Ke, L.; Liu, F.; Huang, C.; Xing, L. Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing. Mater. Des. 2013, 45, 343–348.
  • Ni, D.; Wang, J.; Zhou, Z.; Ma, Z. Fabrication and Mechanical Properties of Bulk NiTip/Al Composites Prepared by Friction stir Processing. J. Alloys Compd. 2014, 586, 368–374.
  • Du, Z.; Tan, M.-J.; Guo, J.-F.; Wei, J. Friction Stir Processing of Al–CNT Composites. Proceedings of the Institution of Mechanical Engineers, Part L. J. Mater. Des. Appl. 2016, 230, 825–833.
  • Kurt, A.; Uygur, I.; Cete, E. Surface Modification of Aluminium by Friction Stir Processing. J. Mater. Process. Technol. 2011, 211(3), 313–317.
  • Elangovan, K.; Balasubramanian, V.; Valliappan, M. Influences of Tool pin Profile and axial Force on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy. Int. J. Adv. Manuf. Technol. 2008, 38(3–4), 285–295.
  • Yuvaraj, N.; Aravindan, S. Fabrication of Al5083/B 4C Surface Composite by Friction Stir Processing and its Tribological Characterization. J. Mater. Res. Technol. 2015, 4(4), 398–410.
  • McDanels, D. L. Analysis of Stress-Strain, Fracture, and Ductility Behavior of Aluminum Matrix Composites Containing Discontinuous Silicon Carbide Reinforcement. Metall. Trans. A 1985, 16, 1105–1115.
  • Gandra, J.; Miranda, R.; Vilaca, P.; Velhinho, A.; Teixeira, J. P. Functionally Graded Materials Produced by Friction Stir Processing. J. Mat. Process. Technol. 2011, 211(11), 1659–1668.
  • Reynolds, A. P. Visualisation of Material Flow in Autogenous Friction Stir Welds. Sci. Technol. Weld. Joining 2000, 5(2), 120–124.
  • Seidel, T.; Reynolds, A. P. Visualization of the Material Flow in AA2195 Friction-Stir Welds using a Marker Insert Technique. Metall. Mater. Trans. A 2001, 32(11), 2879–2884.
  • Lorrain, O.; Favier, V.; Zahrouni, H.; Lawrjaniec, D. Understanding the Material Flow Path of Friction Stir Welding Process Using Unthreaded Tools. J. Mater. Process. Technol. 2010, 210(4), 603–609.
  • Panaskar, N. J.; Sharma, A. Surface Modification and Nanocomposite Layering of Fastener-Hole Through Friction-Stir Processing. Mater. Manuf. Processes 2014, 29, 726–732.
  • Zhang, F.; Su, X.; Chen, Z.; Nie, Z. Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of a Super High Strength Al–Zn–Mg–Cu Aluminum Alloy. Mater. Des. 2015, 67, 483–491.
  • Mao, Y.; Ke, L.; Liu, F.; Liu, Q.; Huang, C.; Xing, L. Effect of Tool Pin Eccentricity on Microstructure and Mechanical Properties in Friction Stir Welded 7075 Aluminum Alloy Thick Plate. Mater. Des. (1980–2015) 2014, 62, 334–343.
  • Sharma, C.; Dwivedi, DK.; Kumar, P. Influence of Pre-Weld Temper Conditions of Base Metal on Microstructure and Mechanical Properties of Friction Stir Weld Joints of Al–Zn–Mg Alloy AA7039. Mater. Sci. Eng. A 2015, 620, 107–119.
  • Sarlak, H.; Atapour, M.; Esmailzadeh, M. Corrosion Behavior of Friction Stir Welded Lean Duplex Stainless Steel. Mater. Des. (1980–2015) 2015, 66, 209–216.
  • Gerlich, A.; Avramovic-Cingara, G.; North, T. Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding. Metall. Mater. Trans. A 2006, 37, 2773–2786.
  • Kumar, N.; Mishra, R. S.; Huskamp, C.; Sankaran, K. K. Microstructure and Mechanical Behavior of Friction Stir Processed Ultrafine Grained Al–Mg–Sc Alloy. Mater. Sci. Eng. A 2011, 528, 5883–5887.
  • Kumar, N.; Mishra, R. S.; Huskamp, C.; Sankaran, K. K. Critical Grain Size For Change in Deformation Behavior in Ultrafine Grained Al–Mg–Sc Alloy. Scr. Mater. 2011, 64, 576–579.
  • Su, J. Q.; Nelson, T. W.; Sterling, C. J. Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys. Scr. Mater. 2005, 52, 135–140.
  • Dolatkhah, A.; Golbabaei, P.; Givi, M. B.; Molaiekiya, F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 2012, 37, 458–464.
  • Gan, Y. X.; Solomon, D.; Reinbolt, M. Friction Stir Processing of Particle Reinforced Composite Materials. Materials 2010, 3, 329–350.
  • Shojaeefard, M. H.; Akbari, M.; Khalkhali, A.; Asadi, P. Effect of Tool Pin Profile on Distribution of Reinforcement Particles During Friction Stir Processing of B4C /Aluminum Composites. Proc. Inst. Mech. Eng. Part L 2016, 1–15. DOI:10.1177/1464420716642471
  • Sheppard, T.; Jackson, A. Constitutive Equations for use in Prediction of Flow Stress During Extrusion of Aluminium Alloys. Mat. Sci. Technol. 1997, 13(3), 203–209.
  • Pantelis, D.; Karakizis, P.; Daniolos, N.; Charitidis, C.; Koumoulos, E.; Dragatogiannis, D. Microstructural Study and Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H111 and AA6082-T6 Reinforced with SiC Nanoparticles. Mater. Manuf. Processes 2016, 31, 264–274.
  • Al-Ghamdi, K. A.; Hussain, G.; Hashemi, R. Fabrication of Metal-Matrix AL7075T651/TiN Nano Composite Employing Friction Stir Process. Proc. Inst. Mech. Eng., Part B J. Eng. Manuf. 2015, 231, 1–13. DOI:10.1177/0954405415596695.
  • Xing, H.; Cao, X.; Hu, W.; Zhao, L.; Zhang, J. Interfacial Reactions in 3D-SiC Network Reinforced Cu-Matrix Composites Prepared by Squeeze Casting. Mater. Lett. 2005, 59(12), 1563–1566.
  • Bradbury, C. R.; Gomon, J.; Kollo, L.; Kwon, H.; Leparoux, M. Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 2014, 585, 362–367.
  • George, R.; Kashyap, K.; Rahul, R.; Yamdagni, S. Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites. Scr. Mater. 2005, 53, 1159–1163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.