301
Views
16
CrossRef citations to date
0
Altmetric
Articles

Performance of alumina-based ceramic inserts in high-speed machining of nimonic 80A

, & ORCID Icon
Pages 8-17 | Received 03 Mar 2018, Accepted 18 Sep 2018, Published online: 10 Nov 2018

References

  • Smart, E. F.; Trent, E. M. Temperature Distribution in Tools Used for Cutting Iron, Titanium and Nickel. Int. J. Production Res. 1975, 13(3), 265–290.
  • Liao, Y. S.; Shiue, R. H. Carbide Tool Wear Mechanism in Turning of Inconel 718 Superalloy. Wear Int. J. Sci. Tech. Frict. Lubric. Wear 1996, 193, 16–24.
  • Rahman, M.; Seah, W. K. H.; Teo, T. T. The Machinability of Inconel 718. J. Mater. Process. Technol. 1997, 63(1–3), 199–204.
  • Lambert, B. K.; Dudek, R. A.; Williams, S. L. Single Point Tool, Orthogonal Cutting Force Equations as a Function of Cutting Speed, Feed, Depth of Cut and Side-Rake Angle. Int. J. Production Res. 1967, 6(3), 241–247.
  • Das, S. R.; Panda, A.; Dhupal, D. Experimental Investigation of Surface Roughness, Flank Wear, Chip Morphology and Cost Estimation During Machining of Hardened AISI 4340 Steel with Coated Carbide Insert. Mech. Adv. Mater. Mod. Processes 2017, 3(1), 9–13.
  • Pawade, R. S.; Joshi, S. S.; Brahmankar, P. K. Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-Speed Turned Inconel 718. Int. J. Mach. Tool Manu. 2008, 48(1), 15–28.
  • Ozel, T.; Ulutan, D. Effects of Machining Parameters and Tool Geometry on Serrated Chip Formation, Specific Forces and Energies in Orthogonal Cutting of Nickel-Based Super Alloy Inconel 100. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2014, 228(7), 673–686.
  • Altin, A.; Nalbant, M.; Taskesen, A. Materials & Design the Effects of Cutting Speed on Tool Wear and Tool Life When Machining Inconel 718 with Ceramic Tools. Mater. Des. 2007, 28, 2518–2522.
  • Chen, L.; El-Wardany, T. I.; Nasr, M.; Elbestawi, M. A. Effects of Edge Preparation and Feed When Hard Turning a Hot Work Die Steel with Polycrystalline Cubic Boron Nitride Tools. CIRP Ann. Manuf. Technol. 2006, 55(1), 89–92.
  • Zou, B.; Chen, M.; Li, S. Study on Finish-Turning of NiCr20TiAl Nickel-Based Alloy Using Al2O3/TiN-Coated Carbide Tools. Int. J. Adv. Manu. Technol. 2011, 53, 81–92.
  • Ezilarasan, C.; Senthilkumar, V. S.; Velayudham, A. Effect of Machining Parameters on Surface Integrity in Machining NIMONIC C-263 Super Alloysing Whisker-Reinforced Ceramic Insert. J. Mater. Eng. Perform. 2013, 22(6), 1619–1628.
  • Ezugwu, E. O.; Okeke., C. I. Behavior of Coated Carbide Tools in High Speed Machining of a Nickel Base Alloy. Tribology Trans. 2002, 45(1), 122–126.
  • Bhatt, A.; Attia, H.; Vargas, R.; Thomson, V. Wear Mechanisms of WC Coated and Uncoated Tools in Finish Turning of Inconel 718. Tribology Int. 2011, 43, 1113–1121.
  • Kutschej, K.; Mayrhofer, P. H.; Kathrein, M.; Polcik, P.; Mitterer, C. A New Low- Friction Concept for Ti1–xAlxN Based Coatings in High-Temperature Applications. Surf. Coat. Technol. 2004, 188–189, 358–363.
  • Thakur, A.; Gangopadhyay, S. Dry Machining of Nickel-Basedsuper Alloy as a Sustainable Alternative Using TiN/TiAlN Coated Tool. J. Clean. Prod. 2016, 129, 256–268.
  • Thakur, A.; Gangopadhyay, S. State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys. Int. J. Mach. Tools and Manu. 2016, 100, 25–54.
  • Hao, Z.; gao, D.; Fan, Y.; Han R. New Observations on Tool Wear Mechanism in Dry Machining Inconel 718. Int. J. Mach. Tool Manuf. 2011, 51(12), 973–979.
  • Pervaiz, S.; Rashid, A.; Deiab, I.; Nicolescu, M. Influence of Tool Materials on Machinability of Titanium-and Nickel-Based Alloys. Rev. Mate. Manuf. Processes 2014, 29(3), 219–252.
  • Amini, S.; Fatemi, M. H.; Atefi, R. High Speed Turning of Inconel 718 Using Ceramic and Carbide Cutting Tools. Arab J. Sci. Eng. 2014, 39, 2323–2330.
  • Ezilarasan, C.; Senthilkumar, V. S.; Velayudham, A. Theoretical Predictions and Experimental Validations on Machining the NIMONIC C-263 Super Alloy. Simul. Modelling Pract. Th. 2014, 40, 192–207.
  • Khidhir, B. A.; Mohamed, B. Machining of Nickel Based Alloys Using Different Cemented Carbide Tools. J. Eng. Sci. Technol. 2010, 5, 264–271.
  • Zhu, D.; Zhang, X. Ding, H. Tool Wear Characteristics in Machining of Nickel-Based Superalloys. Int. J. Mach. Tool Manuf. 2013, 64, 60–77.
  • Choudhury, I. A.; El-Baradie, M. A. Machinability of Nickel-Base Super Alloys: A General Review. J. Mater. Process. Technol. 1998, 77, 278–284.
  • Senthil Kumar, A.; Khan, M. A.; Thiraviam, R. Machining Parameters Optimization for Alumina Based Ceramic Cutting Tools Using Genetic Algorithm. Int. J. Machining Sci. Technol. 2006, 10(4), 471–489.
  • Thakur, D. G.; Ramamoorthy, B.; Vijayaraghavan, L. Machinability Investigation of Inconel 718 in High-Speed Turning. Int. J. Adv. Manu. Technol. 2009, 45(5), 421–429.
  • Ulutan, D.; Ozel, T. Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review. Int. J. Mach. Tools and Manu. 2011, 51(3), 250–280.
  • Jafarian, F.; et al. Experimental Investigation to Optimize Tool Life and Surface Roughness in Inconel 718 Machining. Mater. Manuf. Processes 2016, 31(13), 1683–1691.
  • Umbrello, D.; M’saoubi, R.; Outeiro, J. C. The Influence of Johnson–Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel. Int. J. Mach. Tools and Manu. 2007, 47(3–4), 462–470.
  • Li, B.; Wang, X.; Yujin, H.; Chenggang, L. Analytical Prediction of Cutting Forces in Orthogonal Cutting Using Unequal Division Shearzone Model. Int. J. Adv. Manu. Technol. 2011, 54(5–8), 431–443.
  • Shaw, M. C. Metal Cutting Principle, Oxford: New York. 2005.
  • Iqbal, S. A.; Mativenga, P. T.; Sheikh, M. A. A Comparative Study of the Tool–Chip Contact Length in Turning of Two Engineering Alloys for a Wide Range of Cutting Speeds. Int. J. Adv. Manu. Technol. 2009, 42(1), 30–40.
  • Akhtar, W.; Sun, J.; Sun, P.; Chen, W.; Saleem, Z. Tool Wear Mechanisms in the Machining of Nickel Based Super-Alloys: A Review. Rev. Front. Mech. Eng. 2014, 9(2), 106–119.
  • Zou, B.; Huang, C.; Ji, W.; Li, S. Tool Wear Mechanisms in the Machining of Nickel Based Super-Alloys: A Review. Ceramics Int. 2014, 40(2), 3667–3677.
  • Jing, X.; Huaizhong, L.; Wang, J.; Tian, Y. Modelling the Cutting Forces in Micro-End-Milling Using a Hybrid Approach. Int. J. Adv. Manu. Technol. 2014, 73(9–12), 1647–1656.
  • Altintas, Y. Mechanics of Mechanics of Metal Cutting. In Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design (pp. 4–65). Cambridge: Cambridge University Press, 2012. doi: 10.1017/CBO9780511843723.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.