421
Views
15
CrossRef citations to date
0
Altmetric
Articles

Processing of metallic fiber hybrid spun yarns for better electrical conductivity

, , , ORCID Icon, , ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 1008-1015 | Received 19 Nov 2018, Accepted 17 Feb 2019, Published online: 16 Apr 2019

References

  • Qadir, M. B.; Malik, Z. A.; Ali, U.; Shahzad, A.; Hussain, T.; Abbas, A.; Asad, M.; Khaliq, Z. Response Surface Modeling of Physical and Mechanical Properties of Cotton Slub Yarns. Autex Rese. J. 2018, 18(2), 173–180. DOI: 10.1515/aut-2017-0025.
  • Shahzad, A.; Malik, Z. A.; Nazir, A.; Afzal, A.; Khaliq, Z.; Qadir, M. B. Development and Characterization of Water Wicking Behavior of Hosiery Yarns and Knitted Fabrics. Proceedings of Conference, 1st International Conference on Emerging Trends in Knitting, National Textile University, Faisalabad, Pakistan, February 7, 2018.
  • Qadir, M. B.; Umer, D.; Shahzad, A. Development of Multifunctional Yarns and Fabrics for Interactive Textiles. Proceedings of Conference, 20th International Conference on Wearable Computers and Innovative Fashion, Montreal, Canada, May 24, 2018.
  • Qadir, M. B.; Hussain, T.; Malik, M.; Ahmad, F.; Jeong, S. H. Effect of Elastane Linear Density and Draft Ratio on the Physical and Mechanical Properties of Core-Spun Cotton Yarns. J. Text. Inst. 2014, 105(7), 753–759. DOI: 10.1080/00405000.2013.848045.
  • Qadir, M. B.; Malik, Z. A.; Nazir, A.; Afzal, A.; Khaliq, Z.; Shahzad, A. Preparation of Cotton/Acrylic/Thermolite Tri-Blend Yarn for Thermal Comfort of Knitted Fabrics. Proceedings of Conference, 1st International Conference on Emerging Trends in Knitting, National Textile University, Faisalabad, Pakistan, February 7, 2018.
  • Shahzad, A.; Malik, Z. A.; Qadir, M. B.; Rasheed, A.; Nazir, A. Process of Functional Hybrid Spun Yarns Containing Metallic Fibers for EMI Shielding Fabrics. Proceedings of Conference, 1st International Conference on Technical Textiles (ICTT-2017), National Textile University, Faisalabad, Pakistan, November 9, 2017.
  • Malik, Z. A.; Shahzad, A.; Afzal, A.; Khaliq, Z.; Qadir, M. B. Spun Yarn Quality Requirements for Knitting Industry. Proceedings of Conference, 1st International Conference on Emerging Trends in Knitting, National Textile University, Faisalabad, Pakistan, February 7, 2018.
  • Wang, C.; Zhang, M.; Xia, K.; Gong, X.; Wang, H.; Yin, Z.; Guan, B.; Zhang, Y. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. ACS Appl. Mater. Interfaces. 2017, 9(15), 13331–13338. DOI: 10.1021/acsami.7b02985.
  • Voit, A.; Pfahler, F.; Schneegass, S. Posture Sleeve: Using Smart Textiles for Public Display Interactions. Presented at the Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal QC, Canada, 2018
  • Parzer, P.; Perteneder, F.; Probst, K.; Rendl, C.; Leong, J.; Schuetz, S.; Vogl, A.; Schwoediauer, R.; Kaltenbrunner, M.; Bauer, S.; et al. RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile Interface Based on Resistive Yarns. Presented at the The 31st Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 2018
  • Sun, Y. C.; Cheng, Z. H.; Zhang, Y. M. Analysis on Tensile Properties of Stainless-Steel Fiber and Yarn Quality. Adv. Mater. Res. 2012, 399-401, 176-179. DOI: 10.4028/www.scientific.net/AMR.399-401.176.
  • Kyosev, Y.; Mahltig, B.; Schwarz-Pfeiffer, A. Narrow and Smart Textiles; Springer: Switzerland AG. 2018.
  • Wang, D.; Li, D.; Zhao, M.; Xu, Y.; Wei, Q. Multifunctional Wearable Smart Device Based on Conductive Reduced Graphene Oxide/Polyester Fabric. Appl. Surf. Sci. 2018, 454, 218–226. DOI: 10.1016/j.apsusc.2018.05.127.
  • Li, X.; Hu, H.; Hua, T.; Xu, B.; Jiang, S. Wearable Strain Sensing Textile Based on One-Dimensional Stretchable and Weavable Yarn Sensors. Nano Res. 2018. DOI: 10.1007/s12274-018-2043-7.
  • Ceken, F.; Pamuk, G.; Kayacan, O.; Ozkurt, A.; Ugurlu, Ş. S. Electromagnetic Shielding Properties of Plain Knitted Fabrics Containing Conductive Yarns. J. Eng. Fibers Fabr. 2012, 7(4), 81–87.
  • Pacelli, M.; Loriga, G.; Taccini, N.; Paradiso, R. Sensing Fabrics for Monitoring Physiological and Biomechanical Variables: E-Textile Solutions. Proceedings of Conference, 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, Cambridge, MA, USA, Sept 4–6, 2006.
  • Tang, S. L. P.;. Recent Developments in Flexible Wearable Electronics for Monitoring Applications. Trans. Inst. Meas. Control. 2007, 29(3–4), 283–300. DOI: 10.1177/0142331207070389.
  • Lawrence, C. A.;. Fundamentals of Spun Yarn Technology; Crc Press: Washigton, D.C., USA 2003.
  • Takajima, T.; Kajiwara, K.; McIntyre, J. E. Advanced Fiber Spinning Technology; Woodhead Publishing: Cambridge, England, 1994.
  • Tezel, S.; Kavuşturan, Y.; Vandenbosch, G. A. E.; Volski, V. Comparison of Electromagnetic Shielding Effectiveness of Conductive Single Jersey Fabrics with Coaxial Transmission Line and Free Space Measurement Techniques. Text. Res. J. 2013, 84(5), 461–476. DOI: 10.1177/0040517513503728.
  • Soyaslan, D.; Çömlekçi, S.; Göktepe, Ö. Determination of Electromagnetic Shielding Performance of Plain Knitting and 1 × 1 Rib Structures with Coaxial Test Fixture Relating to ASTM D4935. J. Text. Inst. 2010, 101(10), 890–897. DOI: 10.1080/00405000902945360.
  • Bedeloglu, A.;. Electrical, Electromagnetic Shielding, and Some Physical Properties of Hybrid Yarn-Based Knitted Fabrics. J. Text. Inst. 2013, 104(11), 1247–1257. DOI: 10.1080/00405000.2013.796627.
  • Guo, L.; Berglin, L.; Mattila, H. Improvement of Electro-Mechanical Properties of Strain Sensors Made of Elastic-Conductive Hybrid Yarns. Text. Res. J. 2012, 82(19), 1937–1947. DOI: 10.1177/0040517512452931.
  • Huang, C.-T.; Shen, C.-L.; Tang, C.-F.; Chang, S.-H. A Wearable Yarn-Based Piezo-Resistive Sensor. Sens. Actuators, A. 2008, 141(2), 396–403. DOI: 10.1016/j.sna.2007.10.069.
  • Yu, Z.-C.; Zhang, J.-F.; Lou, C.-W.; Lin, J.-H. Wicking Behavior and Antibacterial Properties of Multifunctional Knitted Fabrics Made from Metal Commingled Yarns. J. Text. Inst. 2015, 106(8), 862–871. DOI: 10.1080/00405000.2014.949504.
  • Lin, J. H.; Lin, T. A.; Chen, A. P.; Lou, C. W. Electromagnetic Shielding Effectiveness of Physical Property PET/Stainless Steel Composite Fabrics. Adv. Mater. Res., 2014, 910, 210–213. DOI: 10.4028/www.scientific.net/AMR.910.210.
  • Lin, J.-H.; Chen, A.-P.; Lin, C.-M.; Lin, C.-W.; Hsieh, C.-T.; Lou, C.-W. Manufacture Technique and Electrical Properties Evaluation of Bamboo Charcoal Polyester/Stainless Steel Complex Yarn and Knitted Fabrics. Fibers Polym. 2010, 11(6), 856–860. DOI: 10.1007/s12221-010-0856-4.
  • Chen, H. C.; Lin, J. H.; Lee, K. C. Electromagnetic Shielding Effectiveness of Copper/Stainless Steel/Polyamide Fiber Co-Woven-Knitted Fabric Reinforced Polypropylene Composites. J. Reinf. Plast. Compos. 2007, 27(2), 187–204. DOI: 10.1177/0731684407082628.
  • Ueng, T. H.; Cheng, K. B. Friction Core-Spun Yarns for Electrical Properties of Woven Fabrics. Compos. A. 2001, 32(10), 1491–1496. DOI: 10.1016/S1359-835X(01)00048-3.
  • Perumalraj, R.; Dasaradhan, B. S.; Nalankilli, G. Copper, Stainless Steel, Glass Core Yarn, and Ply Yarn Woven Fabric Composite Materials Properties. J. Reinf. Plast. Compos. 2010, 29(20), 3074–3082. DOI: 10.1177/0731684410365007.
  • Apreutesei, A.; Curteza, A.; Baltag, O. Study of the Knitted Structures with Different Designs Used for Electromagnetic Shielding. Proceedings of Conference, 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, May 7–9, 2015.
  • Cheng, K. B.;. Production and Electromagnetic Shielding Effectiveness of the Knitted Stainless Steel/Polyester Fabrics. J. Text. Eng. 2000, 46(2), 42–52. DOI: 10.4188/jte.46.42.
  • Bedeloglu, A.; Sunter, N.; Bozkurt, Y. Manufacturing and Properties of Yarns Containing Metal Wires. Mater. Manuf. Processes. 2011, 26(11), 1378–1382. DOI: 10.1080/10426914.2011.577878.
  • Celik Bedeloglu, A.; Sunter, N. Investigation of Polyacrylic/Metal Wire Composite Yarn Characteristics Manufactured on Fancy Yarn Machine. Mater. Manuf. Processes. 2013, 28(6), 650–656. DOI: 10.1080/10426914.2012.727118.
  • Wang, Y.; Yu, W.; Wang, F. Experimental Evaluation and Modified Weibull Characterization of the Tensile Behavior of Tri-Component Elastic-Conductive Composite Yarn. Text. Res. J. 2017, 88(10), 1138–1149. DOI: 10.1177/0040517517698991.
  • Wang, Y.; Yu, W.; Wang, F. Strand-Spacing Dependency on the Tensile Response of Tri-Component Elastic-Conductive Composite Yarns. Text. Res. J. 2018, 0040517518767151. DOI: 10.1177/0040517518767151.
  • Šafářová, V.; Militký, J. A Study of Electrical Conductivity of Hybrid Yarns Containing Metal Fibers. J. Mater. Sci. Eng. B. 2012, 2(2), 197–202. DOI: 10.17265/2161-6221/2012.02.015.
  • Sun, Y. C.; Cheng, Z. Property Analysis of Stainless Steel Fiber (Yarn) and Its Effect on Knitting Process. Adv. Mater. Res. 2014, 1053, 93–96. DOI: 10.4028/www.scientific.net/AMR.1053.93.
  • Hasan, M. M.; STUDY ON THE PERCOLATION THRESHOLD of CONDUCTIVE HYBRID YARN. Presented at the Textile Research Conference, Dhaka, Bangladesh, August 16, 2014
  • Pereira, T.; Silva, P.; Carvalho, H.; Carvalho, M. Textile Moisture Sensor Matrix for Monitoring of Disabled and Bed-Rest Patients. Proceedings of Conference, IEEE EUROCON - International Conference on Computer as a Tool, Lisbon, Portugal, April 27–29, 2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.