389
Views
16
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation on the ball burnishing of carbon fiber reinforced polymer

, &
Pages 1062-1067 | Received 11 Oct 2018, Accepted 15 Apr 2019, Published online: 14 May 2019

References

  • Nattapat, M.; Marimuthu, S.; Kamara, A. M.; Esfahani, M. N. Laser Surface Modification of Carbon Fiber Reinforced Composites. Mater. Manuf. Processes. 2015, 30, 1450–1456. DOI: 10.1080/10426914.2015.1019097.
  • Suthar, J.; Patel, K. M. Processing Issues, Machining, and Applications of Aluminum Metal Matrix Composites. Mater. Manuf. Processes. 2018, 33, 499–527. DOI: 10.1080/10426914.2017.1401713.
  • Abisj, J.; Samal, P.; Narenther, M. S.; Kannan, C.; Balan, A. S. S. Assessment of Drilling-Induced Damage in CFRP under Chilled Air Environment. Mater. Manuf. Processes. 2018, 33, 1361–1368. DOI: 10.1080/10426914.2017.1415452.
  • Shunmugesh, K.; Panneerselvam, K. Optimization of Drilling Process Parameters via Taguchi, TOPSIS and RSA Techniques. Arch. Metall. Mater. 2017, 62, 1803–1812. DOI: 10.1515/amm-2017-0273.
  • Anand, R. S.; Cutting Force, P. K. Hole Quality Analysis in Micro-Drilling of CFRP. Mater. Manuf. Processes. 2018, 33, 1369–1377. DOI: 10.1080/10426914.2017.1401715.
  • Kara, M.; Kirici, M.; Tatar, A. C.; Avci, A. Impact Behavior of Carbon Fiber/Epoxy Composite Tubes Reinforced with Multi-Walled Carbon Nanotubes at Cryogenic Environment. Composites Part B. 2018, 145, 145–154. DOI: 10.1016/j.compositesb.2018.03.027.
  • Liu, J.; Zhang, D.; Qin, L.; Yan, L. Feasibility Study of the Rotary Ultrasonic Elliptical Machining of Carbon Fiber Reinforced Plastics (CFRP). Int. J. Mach. Tool. Manu. 2012, 53, 141–150. DOI: 10.1016/j.ijmachtools.2011.10.007.
  • Rajasekaran, T.; Palanikumar, K.; Vinayagam, B. Application of Fuzzy Logic for Modeling Surface Roughness in Turning CFRP Composites Using CBN Tool. Prod. Eng. 2011, 5, 191–199. DOI: 10.1007/s11740-011-0297-y.
  • Hegab, H.; Umer, U.; Soliman, M.; Kishawy, H. A. Effects of Nano-Cutting Fluids on Tool Performance and Chip Morphology during Machining Inconel 718. Int. J. Adv. Manuf. Technol. 2018, 96, 3449–3458. DOI: 10.1007/s00170-018-1825-0.
  • Revankar, G. D.; Shetty, R.; Rao, S. S.; Gaitonde, V. N. Wear Resistance Enhancement of Titanium Alloy (Ti–6al–4v) by Ball Burnishing Process. J. Mater. Res. Tech. 2017, 6, 13–32. DOI: 10.1016/j.jmrt.2016.03.007.
  • Kovalchenko, A.; Erdemir, A.; Ajayi, O.; Etsion, I. Tribological Behavior of Oil-Lubricated Laser Textured Steel Surfaces in Conformal Flat and Non-Conformal Contacts. Mater. Perform. Char. 2017, 6, 1–23.
  • Khorasani, A.; Yazdi, M.-R.-S. Development of a Dynamic Surface Roughness Monitoring System Based on Artificial Neural Networks (ANN) in Milling Operation. Int. J. Adv. Manuf. Technol. 2017, 93, 141–151. DOI: 10.1007/s00170-015-7922-4.
  • Banh, Q. N.; Shiou, F. J. Determination of Optimal Small Ball-Burnishing Parameters for Both Surface Roughness and Superficial Hardness Improvement of STAVAX. Arab. J. Sci. Eng. 2016, 41, 639–652. DOI: 10.1007/s13369-015-1710-1.
  • Low, K.; Wong, K. Influence of Ball Burnishing on Surface Quality and Tribological Characteristics of Polymers under Dry Sliding Conditions. Tribol. Int. 2011, 44, 144–153. DOI: 10.1016/j.triboint.2010.10.005.
  • Grzesik, W.; Żak, K. Characterization of Surface Integrity Produced by Sequential Dry Hard Turning and Ball Burnishing Operations. J. Manuf. Sci. Eng. 2014, 136, 031017. DOI: 10.1115/1.4026936.
  • El-Axir, M.; Othman, O.; Abodiena, A. Improvements in Out-Of-Roundness and Microhardness of Inner Surfaces by Internal Ball Burnishing Process. J. Mater. Process. Tech. 2008, 196, 120–128. DOI: 10.1016/j.jmatprotec.2007.05.028.
  • Kovács, Z. F.; Viharos, Z. J.; Kodácsy, J. Determination of the Working Gap and Optimal Machining Parameters for Magnetic Assisted Ball Burnishing. Measurement. 2018, 118, 172–180. DOI: 10.1016/j.measurement.2018.01.033.
  • Nguyen, T. T.; Le, X. B. Optimization of Interior Roller Burnishing Process for Improving Surface Quality. Mater. Manuf. Processes. 2018, 33, 1233–1241. DOI: 10.1080/10426914.2018.1453159.
  • Grzesik, W.; Żak, K. Modification of Surface Finish Produced by Hard Turning Using Superfinishing and Burnishing Operations. J. Mater. Process. Tech. 2012, 212, 315–322. DOI: 10.1016/j.jmatprotec.2011.09.017.
  • Travieso-Rodriguez, J. A.; Dessein, G.; Gonzales Rojas, H. A. Improving the Surface Finish of Concave and Convex Surfaces Using a Ball Burnishing Process. Mater. Manuf. Processes. 2011, 26, 1494–1502. DOI: 10.1080/10426914.2010.544819.
  • López de Lacalle, L.-N.; Rodríguez, A.; Lamikiz, A.; Celaya, A.; Alberdi, R. Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness. Mater. Manuf. Processes. 2011, 26, 997–1003. DOI: 10.1080/10426914.2010.529589.
  • Garcia-Granada, -A.-A.; Gomez-Gras, G.; Jerez-Mesa, R.; Travieso-Rodriguez, J.-A.; Reyes, G. Ball-Burnishing Effect on Deep Residual Stress on AISI 1038 and AA2017-T4. Mater. Manuf. Processes. 2017, 32, 1279–1289. DOI: 10.1080/10426914.2017.1317351.
  • Suárez, A.; Veiga, F.; de Lacalle, L. N. L.; Polvorosa, R.; Lutze, S.; Wretland, A. Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718. J. Mater. Eng. Perform. 2016, 25, 5076–5086. DOI: 10.1007/s11665-016-2343-6.
  • Amini, S.; Bagheri, A.; Teimouri, R. Ultrasonic-Assisted Ball Burnishing of Aluminum 6061 and AISI 1045 Steel. Mater. Manuf. Processes. 2017, 33(11), 1250–1259, DOI: 10.1080/10426914.2017.1364862.
  • Aldas, K.; Ozkul, I.; A. Akkurt. Modelling surface roughness in WEDM process using ANFIS method. J. Balk. Tribol. Assoc. 2014, 20(4), 548–558.
  • Pavani, P.; Rao, R. P.; Srikiran, S. Performance Evaluation and Optimization of Nano Boric Acid Powder Weight Percentage Mixed with Vegetable Oil Using the Taguchi Approach. J. Mech. Sci. Tech. 2015, 29, 4877–4883. DOI: 10.1007/s12206-015-1035-8.
  • Rao, D. S.; Hebbar, H. S.; Komaraiah, M.; Kempaiah, U. Investigations on the Effect of Ball Burnishing Parameters on Surface Hardness and Wear Resistance of HSLA Dual-Phase Steels. Mater. Manuf. Processes. 2008, 23, 295–302. DOI: 10.1080/10426910801937306.
  • Buldum, B. B.; Cagan, S. C. Study of Ball Burnishing Process on the Surface Roughness and Microhardness of AZ91D Alloy. Exp. Tech. 2018, 42, 233–241. DOI: 10.1007/s40799-017-0228-8.
  • Ozkul, I.;. Ball Burnishing Proess Effects on Surface Roughness for Al 6013 Alloy. Turk. J. Eng. 2019, 3, 9–13. DOI: 10.31127/tuje.421135.
  • Buldum, B. B.;. Investigation of Surface Roughness and Microhardness in Ball Burnishing Process of AZ31B Magnesium Alloy. Selcuk Univ. J. Eng. Sci. Tech. 2018, 6, 152–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.