208
Views
13
CrossRef citations to date
0
Altmetric
Articles

Evaluating application potentiality of unconventional fluids for grinding Ti-6Al-4V using alumina wheel

ORCID Icon & ORCID Icon
Pages 1151-1159 | Received 05 Apr 2019, Accepted 24 Apr 2019, Published online: 14 May 2019

References

  • Malkin, S.; Guo, C. Grinding Technology: Theory and Application of Machining with Abrasives; Industrial Press Inc.: USA, 2008.
  • Hassanpour, H.; Sadeghi, M. H.; Rezaei, H.; Rasti, A. Experimental Study of Cutting Force, Microhardness, Surface Roughness, and Burr Size on Micromilling of Ti-6Al-4V in Minimum Quantity Lubrication. Mater. Manuf. Processes. 2016, 31(13), 51654–51662. DOI: 10.1080/10426914.2015.1117629.
  • Paul, S.; Singh, A. K.; Ghosh, A. Grinding of Ti-6Al-4V under Small Quantity Cooling Lubrication Environment Using Alumina and MWCNT Nanofluids. Mater. Manuf. Processes. 2017, 32, 608–615. DOI: 10.1080/10426914.2016.1257797.
  • Majumdar, S.; Kumar, S.; Roy, D.; Chakroborty, S.; Das, S. Improvement of Lubrication and Cooling in Grinding. Mater. Manuf. Processes. 2017. DOI: 10.1080/10426914.2017.1364756.
  • Teicher, U.; Künanz, K.; Ghosh, A.; Chattopadhyay, A. B. Performance of Diamond and CBN Single-Layered Grinding Wheels in Grinding Titanium. Mater. Manuf. Processes. 2008, 23(3), 224–227. DOI: 10.1080/10426910701860541.
  • Li, H.; Lin, B.; Wan, S.; Wang, Y.; Zhang, X. An Experimental Investigation on Ultrasonic Vibration-Assisted Grinding of SiO2f/SiO2 Composites. Mater. Manuf. Processes. 2016, 31(7), 887–895. DOI: 10.1080/10426914.2015.1090586.
  • Ahmed, L. S.; Pradeep Kumar, M. Investigation of Cryogenic Cooling Effect in Reaming Ti-6Al-4V Alloy. Mater. Manuf. Processes. 2017, 32(9), 970–978. DOI: 10.1080/10426914.2016.1221088.
  • Mukhopadhyay, M.; Kundu, P. K. Performance Evaluation of Conventional Abrasive Wheels for Grinding Ti-6Al-4V. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012043(1–7). DOI: 10.1088/1757-899X/377/1/012043.
  • Fitseva, V.; Hanke, S.; Dos Santos, J. F. Influence of Rotational Speed on Process Characteristics in Friction Surfacing of Ti-6Al-4V. Mater. Manuf. Processes. 2017, 32(5), 557–563. DOI: 10.1080/10426914.2016.1257799.
  • Kumar, S.; Chattopadhyay, K.; Singh, S. R.; Singh, V. Surface Nanostructuring of Ti-6Al-4V Alloy through Ultrasonic Shot Peening. Int. J. Surf. Sci. Eng. 2017, 11(1), 23–35. DOI: 10.1504/ijsurfse.2017.10003785.
  • Mukhopadhyay, M.; Kundu, P. K. Laser Dressing of Grinding Wheels—A Review. Int. J. Mechatronics Manuf. Sys. 2018, 11(2/3), 167–181. DOI: 10.1504/IJMMS.2018.10013117.
  • Mukhopadhyay, M.; Kundu, P. K. Laser Assisted Conditioning of Aluminium Oxide Grinding Wheel Using Nd: YAGLaser: A Review. Proceedings of National Conference on Advanced Functional Materials Processing and Manufacturing, CMERI, Durgapur, India, 2017, pp 63–66.
  • Engineer, F.; Guo, C.; Malkin, S. Experimental Measurement of Fluid Flow through the Grinding Zone. J. Eng. Ind. 1992, 114(1), 61–66. DOI: 10.1115/1.2899759.
  • Kundu, P. K.; Das, S.; Sinha, S.; Chowdhury, P. P. On Grinding Wheel Performance in Dry and Wet Conditions. In 4th International Conference on Mechanical Engineering; BUET: Dhaka, 2001; 19–24.
  • Mukhopadhyay, M.; Kundu, P. K. Development of a Simple and Efficient Delivery Technique for Grinding Ti-6Al-4V. Int. J. Mach. Mach. Mater. 2018, 20(4), 345–357. DOI: 10.1504/IJMMM.2018.10013115.
  • Boubekri, N.; Shaikh, V. Minimum Quantity Lubrication (MQL) in Machining: Benefits and Drawbacks. J Indus. Intelligent Info. 2015, 3(3), 205–209. DOI: 10.12720/jiii.3.3.205-209.
  • Silva, L. R.; Bianchi, E. C.; Catai, R. E.; Fusse, R. Y.; França, T. V.; Aguiar, P. R. Study on the Behavior of the Minimum Quantity lubricant-MQL Technique under Different Lubricating and Cooling Conditions When Grinding ABNT 4340 Steel. J. Brazilian Soc. Mech. Sci. Eng. 2005, 27(2), 192–199. DOI: 10.1590/S1678-58782005000200012.
  • de Jesus Oliveira, D.; Guermandi, L. G.; Bianchi, E. C.; Diniz, A. E.; de Aguiar, P. R.; Canarim, R. C. Improving Minimum Quantity Lubrication in CBN Grinding Using Compressed Air Wheel Cleaning. J. Mater. Process. Tech. 2012, 212(12), 2559–2568. DOI: 10.1016/j.jmatprotec.2012.05.019.
  • Sadeghi, M. H.; Haddad, M. J.; Tawakoli, T.; Emami, M. Minimal Quantity lubrication-MQL in Grinding of Ti-6Al-4V Titanium Alloy. Int. J. Adv. Manuf. Technol. 2009, 44(5–6), 487–500. DOI: 10.1007/s00170-008-1857-y.
  • Teicher, U.; Ghosh, A.; Chattopadhyay, A. B.; Künanz, K. On the Grindability of Titanium Alloy by Brazed Type Monolayered Superabrasive Grinding Wheels. Int. J. Mach. Tool Manuf. 2006, 46(6), 620–622. DOI: 10.1016/j.ijmachtools.2005.07.012.
  • Mukhopadhyay, M.; Kundu, P. K.; Das, S. Experimental Investigation on Enhancing Grindability Using Alkaline Based Fluid for Grinding Ti-6Al-4V. Mater. Manuf. Processes. 2018. DOI: 10.1080/10426914.2018.1476759.
  • Wojcik, R.;. The Grinding of Titanium Alloys. Arc. Mech. Tech. Auto. 2013, 33, 49–60.
  • Mukhopadhyay, M.; Kundu, P. K. Optimization of Dressing Infeed of Alumina Wheel for Grinding Ti-6Al-4V. Mater. Manuf. Processes. 2018, 33(13), 1453–1458. DOI: 10.1080/10426914.2018.1453164.
  • Mukhopadhyay, M.; Kundu, P. K.; Chatterjee, S.; Das, S. Impact of Dressing Infeed on SiC Wheel for Grinding Ti-6Al-4V. Mater. Manuf. Processes. 2019, 34(1), 54–60. DOI: 10.1080/10426914.2018.1532588.
  • Zhao, N. L.; Guan, W. F. Modeling and Predicting Grinding Force of the Grinding Process. Adv. Mater. Res. 2014, 1055, 165–170. DOI: 10.4028/www.scientific.net/AMR.1055.165.
  • Fox, R. W.; McDonald, A. T.; Pritchard, P. J.; Mitchell, J. W. Fluid Mechanics; 9th Editon; John Wiley & Sons: New Jersey, US; 2015.
  • Gollin, M.; McAssey, E.; Stinson, C. Comparative Performance of Ethylene Glycol/Water and Propylene Glycol/Water Coolants in the Convective and Forced Flow Boiling Regimes. SAE Technical Paper. 1995, 950464. DOI: 10.4271/950464.
  • Alper, T.; Barlow, A. J.; Gray, R. W. Comparison of the Dielectric and Viscoelastic Properties of Two Poly (Propylene Glycol) Liquids. Polymer. 1976, 17(8), 665–669. DOI: 10.1016/0032-3861(76)90204-4.
  • Kline, I. A.; McClintock, S. J. Describing Uncertainties in Single Sample Experiments. Mech. Eng. 1953, 75, 3–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.