513
Views
64
CrossRef citations to date
0
Altmetric
Articles

Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining

ORCID Icon, , , ORCID Icon, & ORCID Icon
Pages 1083-1090 | Received 08 Jan 2019, Accepted 13 May 2019, Published online: 14 Jun 2019

References

  • Pramanik, A.; Littlefair, G. Developments in Machining of Stacked Materials Made of CFRP and Titanium/Aluminum Alloys. Mach. Sci. Technol. 2014, 18(4), 485–508. DOI: 10.1080/10910344.2014.955718.
  • Pramanik, A.;. Problems and Solutions in Machining of Titanium Alloys. Int. J. Adv. Manuf. Technol. 2014, 70(5–8), 919–928. DOI: 10.1007/s00170-013-5326-x.
  • Kumar, S.; Khan, M. A.; Muralidharan, B. Processing of Titanium-Based Human Implant Material Using Wire EDM. Mater. Manuf. Processes. 2019, 34(6), 695–700. DOI: 10.1080/10426914.2019.1566609.
  • Hassanpour, H.; Sadeghi, M. H.; Rezaei, H.; Rasti, A. Experimental Study of Cutting Force, Microhardness, Surface Roughness, and Burr Size on Micromilling of Ti6Al4V in Minimum Quantity Lubrication. Mater. Manuf. Processes. 2016, 31(13), 1654–1662. DOI: 10.1080/10426914.2015.1117629.
  • Madarkar, R.; Agarwal, S.; Attar, P.; Ghosh, S.; Rao, P. Application of Ultrasonic Vibration Assisted MQL in Grinding of Ti–6Al–4V. Mater. Manuf. Processes. 2018, 33(13), 1445–1452. DOI: 10.1080/10426914.2017.1415451.
  • Pramanik, A.; Littlefair, G. Machining of Titanium Alloy (Ti-6al-4v)—Theory to Application. Mach. Sci. Technol. 2015, 19(1), 1–49. DOI: 10.1080/10910344.2014.991031.
  • Pramanik, A.; Islam, M.; Basak, A.; Littlefair, G. Machining and Tool Wear Mechanisms during Machining Titanium Alloys, Advanced Materials Research, Trans Tech Publ, Tan Jin, Ed.; Vol. 651; Scientific.Net: Switzerland. 2013; pp 338–343
  • Liu, G.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Zhang, X.; Guo, S.; Li, R.; Zhai, H. Process Parameter Optimization and Experimental Evaluation for Nanofluid MQL in Grinding Ti-6Al-4V Based on Grey Relational Analysis. Mater. Manuf. Processes. 2018, 33(9), 950–963. DOI: 10.1080/10426914.2017.1388522.
  • Prakash, C.; Singh, S.; Pruncu, C. I.; Mishra, V.; Królczyk, G.; Pimenov, D. Y.; Pramanik, A. Surface Modification of Ti-6Al-4V Alloy by Electrical Discharge Coating Process Using Partially Sintered Ti-Nb Electrode. Materials. 2019, 12(7), 1006. DOI: 10.3390/ma12091564.
  • Pramanik, A.; Littlefair, G. Wire EDM Mechanism of MMCs with the Variation of Reinforced Particle Size. Mater. Manuf. Processes. 2016, 31(13), 1700–1708.
  • Pramanik, A.; Basak, A.; Islam, M. Effect of Reinforced Particle Size on Wire EDM of MMCs. Int. J. Mach. Mach. Mater. 2015, 17(2), 139–149. DOI: 10.1504/IJMMM.2015.070918.
  • Pramanik, A.;. Electrical Discharge Machining of MMCs Reinforced with Very Small Particles. Mater. Manuf. Processes. 2016, 31(4), 397–404. DOI: 10.1080/10426914.2015.1048360.
  • Nain, S. S.; Garg, D.; Kumar, S. Performance Evaluation of the WEDM Process of Aeronautics Super Alloy. Mater. Manuf. Processes. 2018, 33(16), 1793–1808.
  • Pramanik, A.; Basak, A.; Prakash, C. Understanding the Wire Electrical Discharge Machining of Ti6Al4V Alloy. Heliyon. 2019, 5(4), e01473. DOI: 10.1016/j.heliyon.2019.e01473.
  • Mishra, V.; Pandey, P. M. Experimental Investigations into Electric Discharge Grinding and Ultrasonic Vibration-Assisted Electric Discharge Grinding of Inconel 601. Mater. Manuf. Processes. 2018, 33(14), 1518–1530.
  • Chaubey, S. K.; Jain, N. K. Investigations on Surface Quality of WEDM-manufactured Meso Bevel and Helical Gears. Mater. Manuf. Processes. 2018, 33(14), 1568–1577.
  • Moses, M.-D.; Jahan, M. P. Micro-EDM Machinability of Difficult-To-Cut Ti-6Al-4V against Soft Brass. Int. J. Adv. Manuf. Technol. 2015, 81(5), 1345–1361. DOI: 10.1007/s00170-015-7306-9.
  • Ahmed, N.; Ishfaq, K.; Rafaqat, M.; Pervaiz, S.; Anwar, S.; Salah, B. EDM of Ti-6Al-4V: Electrode and Polarity Selection for Minimum Tool Wear Rate and Overcut. Mater. Manuf. Processes. 2019, 1–10. doi:10.1080/10426914.2019.1615082.
  • Nourbakhsh, F.; Rajurkar, K. P.; Malshe, A. P.; Cao, J. Wire Electro-Discharge Machining of Titanium Alloy. Procedia CIRP. 2013, 5, 13–18. DOI: 10.1016/j.procir.2013.01.003.
  • Ghodsiyeh, D.; Golshan, A.; Hosseininezhad, N.; Hashemzadeh, M.; Ghodsiyeh, S. Optimizing Finishing Process in Wedming of Titanium Alloy (Ti6al4v) by Zinc Coated Brass Wire Based on Response Surface Methodology. Indian J. Sci. Technol. 2012, 5(10), 3365–3377.
  • Lahiji, M. A., et al. Optimizing Rough Cut in Wed-ming Titanium Alloy (Ti6al4v) by Brass Wire Using The Taguchi Method. J. Bas. App. Sci. Res. 2012, 2(8),7488-7496.
  • Kuriakose, S.; Shunmugam, M. Characteristics of Wire-Electro Discharge Machined Ti6Al4V Surface. Mater. Lett. 2004, 58(17–18), 2231–2237. DOI: 10.1016/j.matlet.2004.01.037.
  • Kuriachen, B.; Paul, J.; Mathew, J. Modeling of Wire Electrical Discharge Machining Parameters Using Titanium Alloy (Ti-6al-4v). Int. J. Emerging. Technol. Adv. Eng. 2012, 2(4), 377–381.
  • Prasad, A. R.; Ramji, K.; Datta, G. An Experimental Study of Wire EDM on Ti-6Al-4V Alloy. Procedia Mater. Sci. 2014, 5, 2567–2576. DOI: 10.1016/j.mspro.2014.07.517.
  • Saedon, J.; Jaafar, N.; Yahaya, M. A.; Saad, N.; Kasim, M. S. Multi-Objective Optimization of Titanium Alloy through Orthogonal Array and Grey Relational Analysis in WEDM. Procedia. Technol. 2014, 15, 832–840. DOI: 10.1016/j.protcy.2014.09.057.
  • Saini, P. K.; Verma, M. Experimental Investigation of wire-EDM Process Parameters on MRR of Ti-6al-4v Alloy. Int. J. Innovative. Technol. Exploring. Eng. ISSN. 2014, 4(5), 16-20.
  • Poroś, D.; Zaborski, S. Semi-Empirical Model of Efficiency of Wire Electrical Discharge Machining of Hard-To-Machine Materials. Journal of Materials Processing Technology. 2009, 209(3), 1247–1253. DOI: 10.1016/j.jmatprotec.2008.03.046.
  • Antar, M.; Soo, S.; Aspinwall, D.; Jones, D.; Perez, R. Productivity and Workpiece Surface Integrity When WEDM Aerospace Alloys Using Coated Wires. Procedia Engineering. 2011, 19, 3–8. DOI: 10.1016/j.proeng.2011.11.071.
  • Debnath, T.; Patowari, P. K. Fabrication of an Array of Micro-Fins Using Wire-EDM and Its Parametric Analysis. Mater. Manuf. Processes. 2019, 34(5), 580–589. DOI: 10.1080/10426914.2019.1566959.
  • EduPack, C.;. Granta Design Software-Material Selection, 2019 ed.; Granta Design Limited: United Kingdom, 2019.
  • Murr, L.; Esquivel, E.; Quinones, S.; Gaytan, S.; Lopez, M.; Martinez, E.; Medina, F.; Hernandez, D.; Martinez, E.; Martinez, J. Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti–6Al–4V Biomedical Prototypes Compared to Wrought Ti–6Al–4V. Mater. Charact. 2009, 60(2), 96–105. DOI: 10.1016/j.matchar.2008.07.006.
  • Islam, M. N.; Pramanik, A. Comparison of Design of Experiments via Traditional and Taguchi Method. Int. J. Adv. Manuf. Syst. 2016, 15(03), 151–160. DOI: 10.1142/S0219686716500116.
  • Mandal, A.; Dixit, A. R.; Chattopadhyaya, S.; Paramanik, A.; Hloch, S.; Królczyk, G. Improvement of Surface Integrity of Nimonic C 263 Super Alloy Produced by WEDM through Various Post-Processing Techniques. Int. J. Adv. Manuf. Technol. 2017, 93(1–4), 433–443. DOI: 10.1007/s00170-017-9993-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.