650
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Friction stir processing of alloys with secondary phase particles: an overview

, &
Pages 1429-1457 | Received 09 Jul 2019, Accepted 27 Aug 2019, Published online: 06 Sep 2019

References

  • Mishra, R. S.; Ma, Z. Y.; Charit, I. Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite. J. Mater. Sci. Eng. A 2003, 341, 307–310. DOI: 10.1016/S0921-5093(02)00199-5.
  • Ni, D. R.; Wang, J. J.; Zhou, Z. N.; Ma, Z. Y. Fabrication and Mechanical Properties of Bulk NiTip/Al Composites Prepared by Friction Stir Processing. J. Alloys Compd. 2014, 586, 368–374. DOI: 10.1016/j.jallcom.2013.10.013.
  • Mishra, R. S.; Mahoney, M. W.; McFadden, S. X.; Mara, N. A.; Mukherjee, A. K. High Strain Rate Super Plasticity in a Friction Stir Processed 7075 Al Alloy. Scr. Mater. 1999, 42, 163–168. DOI: 10.1016/S1359-6462-(99)00329-2.
  • Ma, Z. Y.;. Friction Stir Processing Technology: A Review. Metall. Mater. Trans A 2008, 39, 642–658. DOI: 10.1007/s11661-007-9459-0.
  • Li, J.; Zhou, J.; Xu, S.; Sheng, J.; Huang, S.; Sun, Y.; Sun, Q.; Boateng, E. A. Effects of Cryogenic Treatment on Mechanical Properties and Micro-structures of IN718 Super-alloy. J. Mater. Sci. Eng. A 2017, 707, 612–619. DOI: 10.1016/j.msea.2017.09.049.
  • Ahmeda, G. M. S.; Mohiuddinb, M. V.; Sultanac, S.; Dorad, H. K.; Singh, V. D. Microstructure Analysis and Evaluation of Mechanical Properties of Nickel Based Super Alloy CCA617. Mater. Today Proc. 2015, 2, 1260–1269. DOI: 10.1016/j.matpr.2015.07.041.
  • Choudhury, I. A.; El-Baradie, M. A. Machinability of Nickel-Base Super Alloys: A General Review. J. Mater. Process. Technol. 1998, 77, 278–284. DOI: 10.1016/S0924-0136(97)00429-9.
  • Cui, H. B.; Xie, G. M.; Luo, Z. A.; Ma, J.; Wang, G. D.; Misra, R. D. K. Microstructural Evolution and Mechanical Properties of the Stir Zone in Friction Stir Processed AISI201 Stainless Steel. Mater. Des. 2016, 106, 463–475. DOI: 10.1016/j.matdes.2016.05.106.
  • Panaskar, N. J.; Surface Modification, S. A. Nanocomposite Layering of Fastener-Hole through Friction-Stir Processing. Mater. Manuf. Process. 2014, 29(6), 726–732. DOI: 10.1080/10426914.2014.892619.
  • Sharma, V.; Gupta, Y.; Kumar, B. V. M.; Prakash, U. Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite. Mater. Manuf. Process. 2016, 31(10), 1384–1392. DOI: 10.1080/10426914.2015.1103869.
  • Schorník, V.; Zetek, M.; Daňa, M. The Influence of Working Environment and Cutting Conditions on Milling Nickel-Based Super Alloys with Carbide Tools. Procedia Eng. 2015, 100, 1262–1269. DOI: 10.1016/j.proeng.2015.01.492.
  • Thakur, A.; Gangopadhyay, S. State-Of-the-art in Surface Integrity in Machining of Nickel-based Super Alloys. Int. J. Mach. Tool. Manu. 2016, 100, 25–54. DOI: 10.1016/j.ijmachtools.2015.10.001.
  • Zhang, G.; Yuan, H.; Li, F. Analysis of Creep Fatigue Life Prediction Models for Nickel Based Super Alloy. Comput. Mater. Sci. 2012, 57, 80–88. DOI: 10.1016/j.commatsci.2011.07.034.
  • Pantelis, D.; Tissandier, A.; Manolatos, P.; Ponthiaux, P. Formation of Wear Resistant Al-SiC Surface Composite by Laser Melt-Particle Injection Process. Mater Sci. Technol. 1995, 11, 299–303. DOI: 10.1179/mst.1995.11.3.299.
  • Meng, C.; Cui, H.; Lu, F.; Tang, X. Evolution Behavior of TiB2 Particles during Laser Welding on Aluminum Metal Matrix Composites Reinforced with Particles. T. Nonferrous Metal Soc. 2013, 23, 1543–1548. DOI: 10.1016/S1003-6326(13)62628-X.
  • Arora, H. S.; Singh, H.; Dhindaw, B. K.; Grewal, H. S. Some Investigations on Friction Stir Processed Zone of AZ91 Alloy. T. Indian I. Metals 2012, 65, 735–739. DOI: 10.1007/s12666-012-0219-5.
  • Li, B.; Shen, Y.; Luo, L.; Hu, W. Fabrication of TiCp/Ti-6Al-4V Surface Composite via Friction Stir Processing (FSP): Process Optimization, Particle Dispersion-Refinement Behavior and Hardening Mechanism. Mater. Sci. Eng. A 2013, 574, 75–85. DOI: 10.1016/j.msea.2013.03.019.
  • Akramifard, H. R.; Shamanian, M.; Sabbaghian, M.; Esmailzadeh, M. Microstructure and Mechanical Properties of Cu/SiC Metal Matrix Composite Fabricated via Friction Stir Processing. Mater. Des. 2014, 54, 838–844. DOI: 10.1016/j.matdes.2013.08.107.
  • Lim, D. K.; Shibayanagi, T.; Gerlich, A. P. Synthesis of Multi-Walled CNT Reinforced Aluminium Alloy Composite via Friction Stir Processing. Mater. Sci. Eng. A 2009, 507, 194–199. DOI: 10.1016/j.msea.2008.11.067.
  • Avettand-Fènoël, M. N; Simar, A.; Shabadi, R.; Taillard, R.; Meester, B. D. Characterization of Oxide Dispersion Strengthened Copper-Based Materials Developed by Friction Stir Processing. Mater. Des. 2014, 60, 343–357. DOI: 10.1016/j.matdes.2014.04.012.
  • Huang, Y.; Wang, T.; Guo, W.; Wan, L.; Lv, S. Microstructure and Surface Mechanical Property of AZ31 Mg/SiCp Surface Composite Fabricated by Direct Friction Stir Processing. Mater. Des. 2014, 59, 274–278. DOI: 10.1016/j.matdes.2014.02.067.
  • Yang, X.; Huang, Y.; Barekar, N. S.; Das, S.; Stone, I. C.; Fan, Z. High Shear Dispersion Technology Prior to Twin Roll Casting for High Performance Magnesium/SiCp Metal Matrix Composite Fabrication. Compos. Pt. A 2016, 90, 349–358. DOI: 10.1016/j.compositesa.2016.07.025.
  • Fernandes, M. R. P.; Martinelli, A. E.; Klein, A. N.; Hammes, G.; Binder, C.; Nascimento, R. M. Production of Nickel Matrix Composites Reinforced with Carbide Particles by Granulation of fine Powders and Mechanical Pressing. Powder Technol. 2017, 305, 673–678. DOI: 10.1016/j.powtec.2016.10.053.
  • Cheng, J.; Li, F.; Zhu, S.; Hao, J.; Yang, J.; Li, W.; Liu, W. High Temperature Tribological Properties of a Nickel-Alloy-Based Solid Lubricating Composite: Effect of Surface Tribo-Chemistry, Counterpart and Mechanical Properties. Wear 2017, 386–387, 39–48. DOI: 10.1016/j.wear.2017.06.001.
  • Huang, X.; Wang, J.; Zhang, H.; Ren, J.; Zan, Q.; Gong, Q.; Wu, B. WC-Ni-Cr-Based Self-Lubricating Composites Fabricated by Pulsed Electric Current Sintering with Addition of WS2 Solid Lubricant. Int. J. Refract. Metals Hard Mater. 2017, 66, 158–162. DOI: 10.1016/j.ijrmhm.2017.03.013.
  • Liu, D. G.; Sun, J.; Song, K. J.; Luo, L. M. Super-Low Friction Nickel-Based Carbon Nanotube Composite Coating Electro-Deposited from Eutectic Solvents. Diam. Relat. Mater. 2017, 74, 229–232. DOI: 10.1016/j.diamond.2017.03.013.
  • Zou, Z.; He, L.; Jiang, H.; Zhan, G.; Wu, J. Development and Analysis of a Low-Wear Micro-Groove Tool for Turning Inconel 718. Wear 2019, 420–421, 163–175. DOI: 10.1016/j.wear.2018.10.002.
  • Gribbin, S.; Ghorbanpour, S.; Ferreri, N. C.; Bicknell, J.; Tsukrov, I.; Knezevic, M. Role of Grain Structure, Grain Boundaries, Crystallographic Texture, Precipitates, and Porosity on Fatigue Behavior of Inconel 718 at Room and Elevated Temperatures. Mater. Charact. 2019, 149, 184–197. DOI: 10.1016/j.matchar.2019.01.028.
  • Ahmed, A.; Lew, M. T.; Diwakar, P.; Kumar, A. S.; Rahman, M. A Novel Approach in High Performance Deep Hole Drilling of Inconel 718. Precis. Eng. 2019. DOI: 10.1016/j.precisioneng.2019.01.012.
  • Li, X.; Zhang, J.; Akiyama, E.; Fu, Q.; Li, Q. Hydrogen Embrittlement Behavior of Inconel 718 Alloy at Room Temperature. J. Mater. Sci. Technol. 2019, 35(4), 499–502. DOI: 10.1016/j.jmst.2018.10.002.
  • Deng, W.; Xu, J.; Hu, Y.; Huang, Z.; Jiang, L. Isothermal and Thermo Mechanical Fatigue Behavior of Inconel 718 Super Alloy. Mater. Sci. Eng. A 2019, 742, 813–819. DOI: 10.1016/j.msea.2018.11.052.
  • Ramkumar, K. D.; Dev, S.; Prabhakar, K. V. P.; Rajendran, R.; Mugundan, K. G.; Narayanan, S. Microstructure and Properties of Inconel 718 and AISI 416 Laser Welded Joints. J. Mater. Process. Technol. 2019, 266, 52–62. DOI: 10.1016/j.jmatprotec.2018.10.039.
  • Onuike, B.; Bandyopadhyay, A. Additive Manufacturing of Inconel 718-ti6al4v Bimetallic Structures. Additive Manuf. 2018, 22, 844–851. DOI: 10.1016/j.addma.2018.06.025.
  • Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Structural, Electrical and Magnetic Properties of Eco-friendly Complex Multiferroic Material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 2019, 45, 822–831. DOI: 10.1016/j.ceramint.2018.09.249.
  • Kumar, N.; Shukla, A.; Choudhary, R. N. P.; Structural, K. A. Electrical and Multiferroic Characteristics of Lead-Free Multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 Solid Solution. RSC Adv. 2018, 8, 36939–36950. DOI: 10.1039/C8RA02306A.
  • Kumar, N.; Shukla, A.; Choudhary, R. N. P. Development of Lead Free Multifunctional Materials Bi(Co0.45Ti0.45Fe0.10)O3. Prog. Nat. Sci-Mater. 2018, 28, 308–314. DOI: 10.1016/j.pnsc.2018.01.012.
  • Singh, V. P.; Patel, S. K.; Kumar, N.; Kuriachen, B. Parametric Effect on Dissimilar Friction Stir Welded Steel-Magnesium Alloys Joints: A Review. Sci. Technol. Weld. J. 2019. DOI: 10.1080/13621718.2019.1567031.
  • Kumar, N.; Shukla, A. A Novel Approach to Synthesize, Studies of Structural and Electrical Characteristic of Bi(Ni0.30Ti0.30Fe0.40)O3 Nanoceramics. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 012025. DOI: 10.1088/1757-899X/330/1/012025.
  • Ni, D. R.; Xue, P.; Wang, D.; Xiao, B. L.; Ma, Z. Y. Inhomogeneous Microstructure and Mechanical Properties of Friction Stir Processed NiAl Bronze. Mater. Sci. Eng. A. 2009, 524, 119–128. DOI: 10.1016/j.msea.2009.06.013.
  • Ni, D. R.; Xiao, B. L.; Ma, Z. Y.; Qiao, Y. X.; Zheng, Y. G. Corrosion Properties of Friction–Stir Processed Cast NiAl Bronze. Corros. Sci. 2010, 52, 1610–1617. DOI: 10.1016/j.corsci.2010.02.026.
  • Lotfollahi, M.; Shamanian, M.; Saatchi, A. Effect of Friction Stir Processing on Erosion Corrosion Behavior of Nickel-Aluminum Bronze. Mater. Des. 2014, 62, 282–287. DOI: 10.1016/j.matdes.2014.05.037.
  • Thapliyal, S.; Dwivedi, D. K. Microstructure Evolution and Tribological Behavior of the Solid Lubricant Based Surface Composite of Cast Nickel Aluminum Bronze Developed by Friction Stir Processing. J. Mater. Process. Technol. 2016, 238, 30–38. DOI: 10.1016/j.jmatprotec.2016.07.009.
  • Rahbar-kelishami, A.; Abdollah-zadeh, A.; Hadavi, M. M.; Seraj, R. A.; Gerlich, A. P. Improvement of Wear Resistance of Sprayed Layer on 52100 Steels by Friction Stir Processing. Appl. Surf. Sci. 2014, 316, 501–507. DOI: 10.1016/j.apsusc.2014.08.033.
  • Zahmatkesh, B.; Enayati, M. H. A Novel Approach for Development of Surface Nanocomposite by Friction Stir Processing. Mater. Sci. Eng. A 2010, 527, 6734–6740. DOI: 10.1016/j.msea.2010.07.024.
  • Kishana, V.; Devaraj, A. Preparation of Nano Surface Layer Composite (tib2) on 6061-T6 Aluminum Alloy via Friction Stir Processing. Mater. Today Proc. 2017, 4, 4065–4069. DOI: 10.1016/j.matpr.2017.02.309.
  • Kumaran, S. T.; Kumar, M. U.; Aravindan, S.; Rajesh, S. Dry Sliding Wear Behavior of SiC and B4C-Reinforced AA6351 Metal Matrix Composite Produced by Stir Casting Process. J. Mater. Des. Appl. 2016, 230(2), 484–491. DOI: 10.1177/1464420715579302.
  • Pozdniakov, A. V.; Zolotorevskiy, V. S.; Barkov, R. Y.; Lotfy, A.; Bazlov, A. I. Microstructure and Material Characterization of 6063/B4C and 1545K/B4C Composites Produced by Two Stir Casting Techniques for Nuclear Applications. J. Alloys Compd. 2016, 664, 317–320. DOI: 10.1016/j.jallcom.2015.12.228.
  • Mazaheri, Y.; Karimzadeh, F.; Enayati, M. H. A Novel Technique for Development of A356/Al2O3 Surface Nanocomposite by Friction Stir Processing. J. Mater. Process. Technol. 2011, 211, 1614–1619. DOI: 10.1016/j.jmatprotec.2011.04.015.
  • Hodder, K. J.; Izadi, H.; McDonald, A. G.; Gerlich, A. P. Fabrication of Aluminum-Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing. Mater. Sci. Eng. A 2012, 556, 114–121. DOI: 10.1016/j.msea.2012.06.066.
  • Wu, Z.; Liu, L.; Shen, B.; Wu, Y.; Deng, Y.; Zhong, C.; Hu, W. Mechanical Behavior of A-Al2O3-coated SiC Particle Reinforced Nickel Matrix Composites. J. Alloys Compd. 2013, 570, 81–85. DOI: 10.1016/j.jallcom.2013.03.125.
  • Yi, D.; Yu, P.; Hu, B.; Liua, H.; Wang, B.; Jiang, Y. Preparation of Nickel-Coated Titanium Carbide Particulates and Their Use in the Production of Reinforced Iron Matrix Composites. Mater. Des. 2013, 52, 572–579. DOI: 10.1016/j.matdes.2013.05.097.
  • Patel, V. V.; Badheka, A.; Kumar, A. Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn-Mg-Cu Alloy. Mater. Manuf. Process. 2015, 31(12), 1573–1582. DOI: 10.1080/10426914.2015.1103868.
  • Heidarzadeh, A.; Jabbari, M.; Esmaily, M. Prediction of Grain Size and Mechanical Properties in Friction Stir Welded Pure Copper Joints Using a Thermal Model. Int. J. Adv. Manuf. Tech. 2015, 77(9–12), 1819–1829. DOI: 10.1007/s00170-014-6543-7.
  • Sahraeinejad, S.; Izadi, H.; Haghshenas, M.; Gerlich, A. P. Fabrication of Metal Matrix Composites by Friction Stir Processing with Different Particles and Processing Parameters. Mater. Sci. Eng. A 2015, 626, 505–513. DOI: 10.1016/j.msea.2014.12.077.
  • Kumar, P. V.; Reddy, G. M.; Rao, K. S. Microstructure, Mechanical and Corrosion Behavior of High Strength AA7075 Aluminium Alloy Friction Stir Welds Effect of Post Weld Heat Treatment. Def. Technol. 2015, 11(4), 362–369. DOI: 10.1016/j.dt.2015.04.003.
  • Zhang, Z.; Yang, R.; Guo, Y.; Chen, G.; Lei, Y.; Cheng, Y.; Yue, Y. Microstructural Evolution and Mechanical Properties of ZrB2/6061Al Nanocomposites Processed by Multi-Pass Friction Stir Processing. Mater. Sci. Eng. A. 2017, 689, 411–418. DOI: 10.1016/j.msea.2017.02.083.
  • Thankachan, T.; Prakash, K.; Microstructural, S. Mechanical and Tribological Behavior of Aluminum Nitride Reinforced Copper Surface Composites Fabricated through Friction Stir Processing Route. Mater. Sci. Eng. A. 2017, 688, 301–308. DOI: 10.1016/j.msea.2017.02.010.
  • Zhang, C.; Ding, Z.; Xie, L.; Zhang, L.; Wu, L.; Fu, Y.; Wang, L.; Lu, W. Electrochemical and in Vitro Behavior of the Nanosized Composites of Ti-6Al-4V and TiO2 Fabricated by Friction Stir Process. Appl. Surf. Sci. 2017, 423, 331–339. DOI: 10.1016/j.apsusc.2017.06.141.
  • Peat, T.; Galloway, A.; Toumpis, A.; Steel, R.; Zhu, W.; Iqbal, N. Enhanced Erosion Performance of Cold Spray Co-Deposited AISI316 MMCs Modified by Friction Stir Processing. Mater. Des. 2017, 120, 22–35. DOI: 10.1016/j.matdes.2017.01.099.
  • Azimi-Roeen, G.; Kashani-Bozorg, S. F.; Nosko, M.; Švec, P. Reactive Mechanism and Mechanical Properties of in Situ Hybrid Nano Composites Fabricated from an Al-Fe2O3 System by Friction Stir Processing. Mater. Charact. 2017, 127, 279–287. DOI: 10.1016/j.matchar.2017.03.007.
  • Peat, T.; Galloway, A.; Toumpis, A.; McNutt, P.; Iqbal, N. The Erosion Performance of Cold Spray Deposited Metal Matrix Composite Coatings with Subsequent Friction Stir Processing. Appl. Surf. Sci. 2017, 396, 1635–1648. DOI: 10.1016/j.apsusc.2016.10.156.
  • Tutunchilar, S.; Besharati Givi, M. K.; Haghpanahi, M.; Asadi, P. Eutectic Al-Si Piston Alloy Surface Transformed to Modified Hyperutectic Alloy via FSP. Mater. Sci. Eng. A 2012, 534, 557–567. DOI: 10.1016/j.msea.2011.12.008.
  • Jesus, J. S.; Costa, J. M.; Loureiro, A.; Ferreira, J. M. Fatigue Strength Improvement of GMAW T-Welds in AA 5083 by Friction-Stir Processing. Int. J. Fatigue. 2017, 97, 124–134. DOI: 10.1016/j.ijfatigue.2016.12.034.
  • Meshram, S. D.; Madhusudhan Reddy, G.; Pandey, S. Friction Stir Welding of Maraging Steel (grade-250). Mater. Des. 2013, 49, 58–64. DOI: 10.1016/j.matdes.2013.01.016.
  • Dolatkhah, A.; Golbabaei, P.; Givi, M. K. B.; Molaiekiya, F. Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing. Mater. Des. 2012, 37, 458–464. DOI: 10.1016/j.matdes.2011.09.035.
  • Khayyamin, D.; Mostafapour, A.; Keshmiri, R. The Effect of Process Parameters on Microstructural Characteristics of AZ91/SiO2 Composite Fabricated by FSP. Mater. Sci. Eng. A 2013, 559, 217–221. DOI: 10.1016/j.msea.2012.08.084.
  • Xie, G. M.; Cui, H. B.; Luo, Z. A.; Misra, R. D. K.; Wang, G. D. Microstructural Evolution and Mechanical Properties of the Stir Zone during Friction Stir Processing a Lean Duplex Stainless Steel. Mater. Sci. Eng. A. 2017, 704, 311–321. DOI: 10.1016/j.msea.2017.07.093.
  • Ajayi, O. O.; Lorenzo-Martin, C. Enhancement of Bronze Alloy Surface Properties by FSP Second-Phase Particle Incorporation. Wear 2017, 376–377, 1055–1063. DOI: 10.1016/j.wear.2017.01.059.
  • Behnagh, R. A.; Besharati, M. K.; Mechanical Properties, A. M. Corrosion Resistance, and Microstructural Changes during Friction Stir Processing of 5083 Aluminum Rolled Plates. Mater. Manuf. Process. 2011, 27(6), 636–640. DOI: 10.1080/10426914.2011.593243.
  • Li, B.; Shen, Y.; Hu, W. Friction-Stir Nitriding of Titanium Alloy Surface Layer. Mater. Manuf. Process. 2014, 29(4), 493–497. DOI: 10.1080/10426914.2013.864410.
  • Torabmostaedi, H.; Zhang, T.; Foot, P.; Dembele, S.; Fernandez, C. Process Control for the Synthesis of ZrO2 Nanoparticles Using FSP at High Production Rate. Powder Technol. 2013, 246, 419–433. DOI: 10.1016/j.powtec.2013.05.006.
  • Frigaard, Ø.; Grong, Ø.; Midling, O. T. A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys. Metall. Mater. Trans. A 2001, 32, 1189–1200. DOI: 10.1007/s11661-001-0128-4.
  • Sarmadi, H.; Kokabi, A. H.; Reihani, S. M. S. Friction and Wear Performance of Copper-Graphite Surface Composites Fabricated by Friction Stir Processing (FSP). Wear 2013, 304, 1–12. DOI: 10.1016/j.wear.2013.04.023.
  • Paules, J. R.; Dilmore, M. F.; Handerhan, K. J. Development of Eglin Steel-A New, Ultrahigh-Strength Steel for Armament and Aerospace Applications. Mater. Sci. Technol-Lond. 2005, 2, 13–23.
  • Sekban, D. M.; Akterer, S. M.; Saray, O.; Ma, Z. Y.; Purcek, G. Formability of Friction Stir Processed Low Carbon Steels Used in Shipbuilding. J. Mater. Sci. Tech. 2018, 34, 237–244. DOI: 10.1016/j.jmst.2017.10.020.
  • Wang, W.; Xu, R.; Hao, Y.; Wang, Q.; Yu, L.; Che, Q.; Cai, J. ;.; Wang, K.; Ma, Z. Corrosion Fatigue Behavior of Friction Stir Processed Interstitial Free Steel. J. Mater. Sci. Tech. 2018, 34, 148–156. DOI: 10.1016/j.jmst.2017.11.013.
  • Xie, G. M.; Cui, H. B.; Luo, Z. A.; Misra, R. D. K.; Wang, G. D. Asymmetric Distribution of Microstructure and Impact Toughness in Stir Zone during Friction Stir Processed a High Strength Pipeline Steel. Mater. Sci. Eng. A 2017, 704, 401–411. DOI: 10.1016/j.msea.2017.08.008.
  • Antonio, B.; Dina, P.; Davide, C. Image Enhancement Algorithm for Optical Microstructural Characterization of Shape Memory TiNi Friction Stir Processed. Procedia Eng. 2017, 183, 233–238. DOI: 10.1016/j.proeng.2017.04.027.
  • Zhang, Q.; Xiao, B. L.; Wang, Q. Z.; Ma, Z. Y. Effects of Processing Parameters on the Microstructures and Mechanical Properties of in Situ (al3ti + Al2O3)/Al Composites Fabricated by Hot Pressing and Subsequent Friction-Stir Processing. Metall. Mater. Trans. A 2014, 45, 2776–2791. DOI: 10.1007/s11661-0142221-5.
  • Lippold, J. C.; Rodelas, J. M.; Rule, J. R. Friction Stir Processing of Ni-Base Alloys. Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, Japan, 2013, pp 369–376. DOI: 10.1533/978-1-78242-164-1.369.
  • Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A. Surface Modifications of Hydro Turbine Steel Using Friction Stir Processing. Appl. Surf. Sci. 2013, 268, 547–555. DOI: 10.1016/j.apsusc.2013.01.006.
  • Hajian, M.; Abdollah-zadeh, A.; Rezaei-Nejad, S. S.; Assadi, H.; Hadavi, S. M. M.; Chung, K.; Shokouhimehr, M. Microstructure and Mechanical Properties of Friction Stir Processed AISI 316L Stainless Steel. Mater. Des. 2015, 67, 82–94. DOI: 10.1016/j.matdes.2014.10.082.
  • Sharifitabar, M.; Sarani, A.; Khorshahian, S.; Shafiee Afarani, M. Fabrication of 5052al/al2o3 Nanoceramic Particle Reinforced Composite via Friction Stir Processing Route. Mater. Des. 2011, 32, 4164–4172. DOI: 10.1016/j.matdes.2011.04.048.
  • Zohoor, M.; Givi, M. K. B.; Salami, P. Effect of Processing Parameters on Fabrication of Al-Mg/Cu Composites via Friction Stir Processing. Mater. Des. 2012, 39, 358–365. DOI: 10.1016/j.matdes.2012.02.042.
  • Ghasemi-kahrizsangi, A.; Kashani-Bozorg, S. F.; Moshref-Javadi, M. Effect of Friction Stir Processing on the Tribological Performance of Steel/Al2O3 Nanocomposites. Surf. Coat. Technol. 2015, 276, 507–515. DOI: 10.1016/j.surfcoat.2015.06.023.
  • Barmouz, M.; Seyfi, J.; Givi, M. K. B.; Hejazi, I.; Davachi, S. M. A Novel Approach for Producing Polymer Nanocomposites by In-situ Dispersion of Clay Particles via Friction Stir Processing. Mater. Sci. Eng. A 2011, 528, 3003–3006. DOI: 10.1016/j.msea.2010.12.083.
  • Qian, J.; Li, J.; Xiong, J.; Zhang, F.; Lin, X. In Situ Synthesizing Al3Ni for Fabrication of Intermetallic Reinforced Aluminium Alloy Composites by Friction Stir Processing. Mater. Sci. Eng. A 2012, 550, 279–285. DOI: 10.1016/j.msea.2012.04.070.
  • Gunter, C.; Miles, M. P.; Liu, F. C.; Nelson, T. W. Solid State Crack Repair by Friction Stir Processing in 304L Stainless Steel. J. Mater. Sci. Technol. 2018, 34, 140–147. DOI: 10.1016/j.jmst.2017.10.023.
  • Tinubu, O. O.; Das, S.; Dutt, A.; Mogonye, J. E.; Ageh, V.; Xu, R.; Forsdike, J.; Mishra, R. S.; Scharf, T. W. Friction Stir Processing of A-286 Stainless Steel: Microstructural Evolution during Wear. Wear 2016, 356–357, 94–100. DOI: 10.1016/j.wear.2016.03.018.
  • Escobar, J. D.; Velásquez, E.; Santos, T. F. A.; Ramirez, A. J.; López, D. Improvement of Cavitation Erosion Resistance of a Duplex Stainless Steel through Friction Stir Processing (FSP). Wear 2013, 297, 998–1005. DOI: 10.1016/j.wear.2012.10.005.
  • Selvam, K.; Ayyagari, A.; Grewal, H. S.; Mukherjee, S.; Arora, H. S. Enhancing the Erosion-Corrosion Resistance of Steel through Friction Stir Processing. Wear 2017, 386–387, 129–138. DOI: 10.1016/j.wear.2017.06.009.
  • Palanivel, R.; Mathews, P. K.; Murugan, N.; Dinaharan, I. Effect of Tool Rotational Speed and Pin Profile on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded AA5083-H111 and AA6351-T6 Aluminium Alloys. Mater. Des. 2012, 40, 7–16. DOI: 10.1016/j.matdes.2012.03.027.
  • Mousavizade, S. M.; Pouranvari, M.; Malek Ghaini, F.; Fujii, H.; Sun, Y. F. Dynamic Recrystallization Phenomena during Laser-Assisted Friction Stir Processing of a Precipitation Hardened Nickel Base Superalloy. J. Alloys Compd. 2016, 685, 806–811. DOI: 10.1016/j.jallcom.2016.06.209.
  • Rai, R.; De, A.; Bhadeshia, H. K. D. H.; Roy, T. D. Review: Friction Stir Welding Tools. Sci. Technol. Weld. J. 2011, 16, 325–342. DOI: 10.1179/1362171811y.0000000023.
  • Navazani, M.; Dehghani, K. Fabrication of Mg-ZrO2 Surface Layer Composites by Friction Stir Processing. J. Mater. Process. Technol. 2016, 229, 439–449. DOI: 10.1016/j.jmatprotec.2015.09.047.
  • Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B. Characterization of Molybdenum Particles Reinforced Al6082 Aluminum Matrix Composites with Improved Ductility Produced Using Friction Stir Processing. Mater. Charact. 2017, 125, 13–22. DOI: 10.1016/j.matchar.2017.01.016.
  • Lv, Y.; Ding, Y.; Han, Y.; Zhang, L.; Wang, L.; Lu, W. Strengthening Mechanism of Friction Stir Processed and Post Heat Treated NiAl Bronze Alloy: Effect of Rotation Rates. Mater. Sci. Eng. A 2017, 685, 439–446. DOI: 10.1016/j.msea.2016.12.050.
  • Tungala, V.; Arora, A.; Gwalani, B.; Mishra, R. S.; Brennan, R. E.; Cho, K. C. Microstructure and Mechanical Properties of Friction Stir Processed Cast Eglin Steel (ES-1). Mater. Sci. Eng. A 2018, 709, 105–114. DOI: 10.1016/j.msea.2017.10.033.
  • Nelson, T. W.; Scott, A. R. Controlling Hard Zone Formatation in Friction Stir Processed HSLA Steel. J. Mater. Process. Technol. 2016, 231, 66–74. DOI: 10.1016/j.jmatprotec.2015.12.013.
  • Sekban, D. M.; Saray, O.; Aktarer, S. M.; Purcek, G.; Ma, Z. Y. Microstructure, Mechanical Properties and Formbility of Friction Stir Processed Interstitial-free Steel. Mater. Sci. Eng. A 2015, 642, 57–64. DOI: 10.1016/j.msea.2015.06.068.
  • Sekban, Aktarer, S. M.; Xue, P.; Ma, Z. Y.; Purcek, G. Impact Toughness of Friction Stir Processed Low Carbon Steel Used in Shipbuilding. Mater. Sci. Eng. A 2016, 672. DOI: 10.1016/j.msea.2016.06.063.
  • Selvam, K.; Prakash, A.; Grewal, H. S.; Arora, H. S. Structural Refinement in Austenitic Stainless Steel by Submerged Friction Stir Processing. Mater. Chem. Phys. 2017, 197, 200–207. DOI: 10.1016/j.matchemphys.2017.05.034.
  • Hong, C.; Gu, D.; Dai, D.; Gasser, A.; Weisheit, A.; Kelbassa, I.; Zhong, M.; Poprawe, R. Laser Metal Diposition of TiC/Inconel 718 Composite with Tailored Microstructure. Opt. Laser Technol. 2013, 54, 98–109. DOI: 10.1016/j.optlastec.2013.05.011.
  • Mei, Y.; Liu, Y.; Liu, C.; Li, C.; Yu, L.; Guo, Q.; Li, H. Effect of Base Metal and Welding Speed on Fusion Zone Microstructure and HAZ Hot-Cracking of Electron-Beam Welded Inconel 718. Mater. Des. 2016, 89, 964–977. DOI: 10.1016/j.matdes.2015.10.082.
  • Rong, T.; Gu, D.; Shi, Q.; Cao, S.; Xia, M. Effects of Tailored Gradient Interface on Wear Properties of WC/Inconel 718 Composites Using Selective Laser Melting. Surf. Coat. Tech. 2016, 307, 418–427. DOI: 10.1016/j.surfcoat.2016.09.011.
  • Amirafshar, A.; Pouraliakbar, H. Effect of Tool Pin Design on the Microstructural Evolutions and Tribological Characteristics of Friction Stir Processed Structural Steel. Measurement 2015, 68, 111–116. DOI: 10.1016/j.measurement.2015.02.051.
  • Ma, Z. Y.; Feng, A. H.; Chen, D. L.; Shen, J. Recent Advances in Friction Stir Welding/Processing of Aluminium Alloys: Microstructural Evolution and Mechanical Properties. Crit. Rev. Solid State 2017, 43(8), 269–333. DOI: 10.1080/10408436.2017.1358145.
  • Elangovan, K.; Balasubramanian, V.; Valliappan, M. Influences of Tool Pin Profile and Axial Force on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy. Int. J. Adv. Manuf. Tech. 2007, 38, 285–295. DOI: 10.1007/s00170-007-1100-2.
  • Fattah-alhosseini, A.; Vakili-Azghandi, M.; Sheikhi, M.; Keshavarz, M. K. Passive and Electrochemical Response of Friction Stir Processed Pure Titanium. J. Alloys Compd. 2017, 704, 499–508. DOI: 10.1016/j.jallcom.2017.02.095.
  • Mahmoud, E. R. I.; Takahashi, M.; Shibayanagi, T.; Ikeuchi, K. Fabrication of Surface-Hybrid-MMCs Layer on Aluminum Plate by Friction Stir Processing and Its Wear Characteristics. Mater. Trans. 2009, 50, 1824–1831. DOI: 10.2320/matertrans.M2009092.
  • Xue, P.; Xiao, B. L.; Ma, Z. Y. Achieving Ultrafine-Grained Structure in a Pure Nickel by Friction Stir Processing with Additional Cooling. Mater. Des. 2014, 56, 848–851. DOI: 10.1016/j.matdes.2013.12.001.
  • Xu, N.; Ueji, R.; Fujii, H. Enhanced Mechanical Properties of 70/30 Brass Joint by Rapid Cooling Friction Stir Welding. Mater. Sci. Eng. A. 2014, 610, 132–138. DOI: 10.1016/j.msea.2014.05.037.
  • Valiev, R. Z.; Langdon, T. G. Principles of Equal-channel Angular Pressing as a Processing Tool for Grain Refinement. Prog. Mater. Sci. 2006, 51, 881–981. DOI: 10.1016/j.pmatsci.2006.02.003.
  • Najafi, M.; Nasiri, A. M.; Kokabi, A. H. Microstructure and Hardness of Friction Stir Processed AZ31 with SiCp. Int. J. Mod. Phys. B 2008, 22, 2879–2885. DOI: 10.1142/S0217979208047717.
  • Faraji, G.; Asadi, P. Characterization of AZ91/Alumina Nanocomposite Produced by FSP. Mater. Sci. Eng. A 2011, 528, 2431–2440. DOI: 10.1016/j.msea.2010.11.065.
  • Rahsepar, M.; Jarahimoghadam, H. The Influence of Multipass Friction Stir Processing on the Corrosion Behavior and Mechanical Properties of Zircon-reinforced Al Metal Matrix Composites. Mater. Sci. Eng. A 2016, 671, 214–220. DOI: 10.1016/j.msea.2016.05.056.
  • Barmouz, M.; Asadi, P.; Besharati Givi, M. K.; Taherishargh, M. Investigation of Mechanical Properties of Cu/SiC Composite Fabricated by FSP: Effect of SiC Particles Size and Volume Fraction. Mater. Sci. Eng. A 2011, 528, 1740–1749. DOI: 10.1016/j.msea.2010.11.006.
  • Bauri, R.; Yadav, D.; Kumar, C. N. S.; Balaji, B. Tungsten Particle Reinforced Al 5083 Composite with High Strength and Ductility. Mater. Sci. Eng. A 2015, 620, 67–75. DOI: 10.1016/j.msea.2014.09.108.
  • Shafiei-Zarghani, A.; Kashani-Bozorg, S. F.; Zarei-Hanzaki, A. Microstructures and Mechanical Properties of Al/Al2O3 Surface Nano-composite Layer Produced by Friction Stir Processing. Mater. Sci. Eng. A 2009, 500, 84–91. DOI: 10.1016/j.msea.2008.09.064.
  • Ghasemi-Kahrizsangi, A.; Kashani-Bozorg, S. F. Microstructure and Mechanical Properties of Steel/TiC Nano-composite Surface Layer Produced by Friction Stir Processing. Surf. Coat. Tech. 2012, 209, 15–22. DOI: 10.1016/j.surfcoat.2012.08.005.
  • Eskandari, H.; Taheri, R. A Novel Technique for Development of Aluminum Alloy Matrix/TiB2/Al2O3 Hybrid Surface Nanocomposite by Friction Stir Processing. Procedia Mater. Sci. 2015, 11, 503–508. DOI: 10.1016/j.mspro.2015.11.080.
  • Faraji, G.; Dastani, O.; Mousavi, S. A. A. A. Effect of Process Parameters on Microstructure and Microhardness of AZ91/Al2O3 Surface Composite Produced by FSP. J. Mater. Eng. Perform. 2011, 20, 1583–1590. DOI: 10.1007/s11665-010-9812-0.
  • Tjong, S. C.; Ma, Z. Y. Microstructural and Mechanical Characteristics of in Situ Metal Matrix Composites. Mater. Sci. Eng. R Rep. 2000, 29, 49–113. DOI: 10.1016/S0927-796X(00)00024-3.
  • Farnoush, H.; Sadeghi, A.; Abdi Bastami, A.; Moztarzadeh, F.; Aghazadeh Mohandesi, J. An Innovative Fabrication of Nano-HA Coatings on Ti-CaP Nanocomposite Layer Using a Combination of Friction Stir Processing and Electrophoretic Deposition. Ceram. Int. 2013, 39, 1477–1483. DOI: 10.1016/j.ceramint.2012.07.092.
  • Ratna, B. S.; Kumar, S.; Chakkingal, U.; Nandakumar, V.; Doble, M. Nano-Hydroxyapatite Reinforced AZ31 Magnesium Alloy by Friction Stir Processing: A Solid-State Processing for Biodegradable Metal Matrix Composites. J. Mater. Sci. 2014, 25, 975–988. DOI: 10.1007/s10856-0135127-7.
  • Rahaber-kelishami, A.; Abdollah-Zodeh, A.; Hadavi, M. M.; Seraj, R. A.; Girlish, A. P. Improvement of Wear Resistance Sprayed Layer on 52100 Steel by Friction Stir Processing. Appl. Surf. Sci. 2014, 316, 501–507. DOI: 10.1016/j.apsusc.2014.08.033.
  • Nelaturu, P.; Jana, S.; Mishra, R. S.; Grant, G.; Carlson, B. E. Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy. Mater. Sci. Eng. A 2018, 716, 165–178. DOI: 10.1016/j.msea.2018.01.044.
  • Thapliyal, S.; Dwivedi, D. K. On Cavitation Erosion Wear of Friction Stir Processed of Cast Nickel Aluminium Bronze. Wear 2017, 376–377, 1030–1042. DOI: 10.1016/j.wear.2017.01.030.
  • Kumar, K. A.; Natarajan, S.; Duraiselvam, M.; Synthesis, R. S. Characterization and Mechanical Behavior of Al 3003 - TiO2 Surface Composites through Friction Stir Processing. Mater. Manuf. Process. 2019, 34(2), 183–193. DOI: 10.1080/10426914.2018.1544711.
  • Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B. Development of Stainless Steel Particulate Reinforced AA6082 Aluminum Matrix Composites with Enhanced Ductility Using Friction Stir Processing. Mater. Sci. Eng. A 2017, 685, 317–326. DOI: 10.1016/j.msea.2017.01.022.
  • Huang, G.; Wu, J.; Hou, W.; Shen, Y.; Gao, J. Producing of Al–WC Surface Composite by Additive Friction Stir Processing. Mater. Manuf. Processes 2019, 34(2), 147–158. DOI: 10.1080/10426914.2018.1532590.
  • Patel, V.; Li, W.; Xu, Y. Stationary Shoulder Tool in Friction Stir Processing: A Novel Low Heat Input Tooling System for Magnesium Alloy. Mater. Manuf. Process. 2019, 34(2), 177–182. DOI: 10.1080/10426914.2018.1544716.
  • Karthik, G. M.; Janaki Ram, G. D.; Kottada, R. Friction Stir Selective Alloying. Mater. Sci. Eng. A 2017, 684, 186–190. DOI: 10.1016/j.msea.2016.12.064.
  • Xie, S.; Li, R.; Yuan, T.; Chen, C.; Zhou, K.; Song, B.; Shi, Y. Laser Cladding Assisted by Friction Stir Processing for Preparation of Deformed Crack-free Ni-Cr-Fe Coating with Nanostructure. Optics Laser Technol. 2018, 99, 374–381. DOI: 10.1016/j.optlastec.2017.09.025.
  • Abdollahi, S. H.; Karimzadeh, F.; Enayati, M. H. Development of Surface Composite Based on Mg-Al-Ni System on AZ31 Magnesium Alloy and Evaluation of Formation Mechanism. J. Alloys Compd. 2015, 623, 335–341. DOI: 10.1016/j.jallcom.2014.11.029.
  • Parikh, V. K.; Badgujar, A. D.; Ghetiya, N. D. Joining of Metal Matrix Composites Using Friction Stir Welding: A Review. Mater. Manuf. Process. 2019, 34(2), 123–146. DOI: 10.1080/10426914.2018.1532094.
  • Vinoth Jebaraj, A.; Ajay Kumar, L.; Deepak, C. R.; Aditya, K. V. V. Weldability, Machinability and Surfacing of Commercial Duplex Stainless Steel AISI2205 for Marine Applications-A Recent Review. J. Adv. Res. 2017, 8(3), 183–199. DOI: 10.1016/j.jare.2017.01.002.
  • Golmohammadi, M.; Atapour, M.; Ashrafi, A. Fabrication and Wear Characterization of an A413/Ni Surface Metal Matrix Composite Fabricated Via Friction Stir Processing. Mater. Des. 2015, 85, 471–482. DOI: 10.1016/j.matdes.2015.06.090.
  • Esmaily, H.; Habibolahzade, A.; Tajally, M. Parametric Investigation of Al5456/BNi-2 Composite Properties Fabricated by Friction Stir Processing. J. Alloys Compd. 2017, 725, 1044–1054. DOI: 10.1016/j.jallcom.2017.07.134.
  • Agarwal, M.; Srivastava, R. Influence of Processing Parameters on Microstructure and Mechanical Response of a High-Pressure Die Cast Aluminum Alloy. Mater. Manuf. Process. 2019, 34(4), 462–472. DOI: 10.1080/10426914.2018.1512124.
  • Jha, N. K.; Singh, T.; Dvivedi, A.; Rajesha, S. Experimental Investigations into Triplex Hybrid Process of GA-RDECDM during Subtractive Processing of MMC’s. Mater. Manuf. Process. 2019, 34(3), 243–255. DOI: 10.1080/10426914.2018.1512126.
  • Muthaiah, V. M. R.; Meka, S. R.; Kumar, B. V. M. Processing of Heat-Treated Silicon Carbide-Reinforced Aluminum Alloy Composites. Mater. Manuf. Process. 2019, 34(3), 320–321. DOI: 10.1080/10426914.2018.1544708.
  • Khodabakhshi, F.; Simchi, A.; Kokabi, A. H.; Gerlich, A. P.; Nosko, M. Effects of Post-Annealing on the Microstructure and Mechanical Properties of Friction Stir Processed Al-Mg-TiO2 Nanocomposites. Mater. Des. 2014, 63, 30–41. DOI: 10.1016/j.matdes.2014.05.065.
  • Zhou, X.; Ouyang, C. Anodized Porous Titanium Coated with Ni-CeO2 Deposits for Enhancing Surface Toughness and Wear Resistance. Appl. Surf. Sci. 2017, 405, 476–488. DOI: 10.1016/j.apsusc.2017.02.034.
  • Ke, L.; Huang, C.; Xing, L.; Huang, K. Al-Ni Intermetallic Composites Produced in Situ by Friction Stir Processing. J. Alloys Compd. 2010, 503, 494–499. DOI: 10.1016/j.jallcom.2010.05.040.
  • Zhang, H.; Dong, X.; Chen, S. Solid Particle Erosion-Wear Behaviour of Cr3C2–NiCR Coating on Ni-based Superalloy. Adv. Mech. Eng. 2017, 9(3), 1–9. DOI: 10.1177/1687814017694580.
  • Basavarajappa, S.; Chandramohan, G.; Mahadevan, A.; Thangavelu, M.; Subramanian, R.; Gopalakrishnan, P. Influence of Sliding Speed on the Dry Sliding Wear Behaviour and the Subsurface Deformation on Hybrid Metal Matrix Composite. Wear 2007, 262, 1007–1012. DOI: 10.1016/j.wear.2006.10.016.
  • Singh, M. A.; Rajbongshi, S. K.; Sarma, D. K.; Hanzel, O.; Sedláček, J.; Šajgalík, P. Surface and Porous Recast Layer Analysis in µ-edm of MWCNT-Al2O3 Composites. Mater. Manuf. Process. 2019, 34(5), 567–579. DOI: 10.1080/10426914.2019.1566617.
  • Rajak, D. K.; Mahajan, N. N.; Das, S. Fabrication and Investigation of Influence of CaCO3 as Foaming Agent on Al-SiCp Foam. Mater. Manuf. Process. 2019, 34(4), 379–384. DOI: 10.1080/10426914.2018.1532093.
  • Suresha, S.; Sridhara, B. K. Wear Characteristics of Hybrid Aluminium Matrix Composites Reinforced with Graphite and Silicon Carbide Particulates. Comput. Sci. Technol. 2010, 70, 1652–1659. DOI: 10.1016/j.compscitech.2010.06.013.
  • Bhatia, R.; Singh, H.; Sidhu, B. S. Characterisation of 80% Cr3C2-20%(Ni-20cr) Coating and Erosion Behaviour. Asian J. Eng. Appl. Tech. 2012, 1, 5–12.
  • Devaraju, A.; Kumar, A.; Kotiveerachari, B. Influence of Rotational Speed and Reinforcements on Wear and Mechanical Properties of Aluminium Hybrid Composites via Friction Stir Processing. Mater. Des. 2013, 45, 576–585. DOI: 10.1016/j.matdes.2012.09.036.
  • Liu, H.; Lian, L.; Liu, Y. Vacuum Activation Assisted Hydrogenation-Dehydrogenation for Preparing High-Quality Zirconium Powder. Mater. Manuf. Process. 2019, 34(6), 630–636. DOI: 10.1080/10426914.2019.1566610.
  • Yoozbashizadeh, M.; Chartosias, M.; Victorino, C.; Decker, D. Investigation on the Effect of Process Parameters in Atmospheric Pressure Plasma Treatment on Carbon Fiber Reinforced Polymer Surfaces for Bonding. Mater. Manuf. Process. 2019, 34(6), 660–669. DOI: 10.1080/10426914.2019.1566613.
  • Bolelli, G.; Bonferroni, B.; Laurila, J.; Lusvarghi, L.; Milanti, A.; Niemib, K.; Vuoristo, P. Micromechanical Properties and Sliding Wear Behaviour of HVOF-Sprayed Fe-Based Alloy Coatings. Wear 2012, 276–277, 29–47. DOI: 10.1016/j.wear.2011.12.001.
  • Cui, Y.; Wang, C.; Tang, Z. Effect of Explosive Charge on 65cr3c2-35nicr Coatings Fabricated by D-Gun Technology. Mater. Sci. Forum 2016, 852, 1087–1094. DOI: 10.4028/www.scientific.net/MSF.852.1087.
  • Chatha, S. S.; Sidhu, H. S.; Sidhu, B. S. Characterisation and Corrosion-Erosion Behaviour of Carbide Based Thermal Spray Coatings. J. Miner. Mater. Charact. Eng. 2012, 11, 569–586. DOI: 10.4236/jmmce.2012.116041.
  • Tamta, K.; Karunakar, D. B. Enhancing Mechanical Properties and Permeability of Ceramic Shell in Investment Casting Process. Mater. Manuf. Process. 2019, 34(6), 612–623. DOI: 10.1080/10426914.2018.1532088.
  • Miguel, J. M.; Guilemany, J. M.; Vizcaino, S. Tribological Study of NiCrBSi Coating Obtained by Different Processes. Tribol. Int. 2003, 36, 181–187. DOI: 10.1016/S0301-679X(02)00144-5.
  • Javed, K.; Oolo, M.; Savest, N.; Krumme, A. A Review on Graphene-Based Electrospun Conductive Nanofibers, Supercapacitors, Anodes, and Cathodes for Lithium-Ion Batteries. Crit. Revi. Solid State 2018. DOI: 10.1080/10408436.2018.1492367.
  • Lu, G.; Li, J.; Zhang, Y.; Sokol, D. W. A Metal Marking Method Based on Laser Shock Processing. Mater. Manuf. Process. 2019, 34(6), 598–603. DOI: 10.1080/10426914.2019.1566618.
  • Kartsonakis, I. A.; Dragatogiannis, D. A.; Koumoulos, E. P.; Karantonis, A.; Charitidis, C. A. Corrosion Behaviour of Dissimilar Friction Stir Welded Aluminium Alloys Reinforced with Nanoadditives. Mater. Des. 2016, 102, 56–67. DOI: 10.1016/j.matdes.2016.04.027.
  • Nandan, R.; Debroy, T.; Bhadeshia, H. Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties. Prog. Mater. Sci. 2008, 53, 980–1023. DOI: 10.1016/j.pmatsci.2008.05.001.
  • Akbari, M.; Khalkhali, A.; Keshavarz, S. M. E.; Sarikhani, E. Investigation of the Effect of Friction Stir Processing Parameters on Temperature and Forces of Al–Si Aluminum Alloys. Mater. Des. Appl. 2018, 232(3), 213–229. DOI: 10.1177/1464420715621337.
  • Zhang, Y.; Wang, C.; Guo, X.; Chen, Y. Sintering Densification Behaviors of Ti-1Al-8V-5Fe Alloy Based on TiH2 and TiH1.5 Powders. Mater. Manuf. Process. 2019, 34(8), 921–926. DOI: 10.1080/10426914.2019.1594274.
  • Ji, S.; Li, Z.; Wang, Y.; Ma, L. Joint Formation and Mechanical Properties of Back Heating Assisted Friction Stir Welded Ti–6Al–4V Alloy. Mater. Des. 2017, 113, 37–46. DOI: 10.1016/j.matdes.2016.10.012.
  • Seramak, T.; Zielinski, A.; Serbinski, W.; Zasinska, K. Powder Metallurgy of the Porous Ti-13Nb-13Zr Alloy of Different Powder Grain Size. Mater. Manuf. Process. 2019, 34(8), 915–920. DOI: 10.1080/10426914.2019.1605178.
  • Chen, C.; Richter, A.; Kögler, R.; Griepentrog, M.; Reinstädt, P. Ion-irradiation Effects on Dissimilar Friction Stir Welded Joints between ODS Alloy and Ferritic Stainless Steel. J. Alloys Compd. 2014, 615, S448–S453. DOI: 10.1016/j.jallcom.2013.11.123.
  • Chang, H.; Wang, C.; Cheng, C. Microstructure Feature of Friction Stir Butt-Welded Ferritic Ductile Iron. Mater. Des. 2014, 56, 572–578. DOI: 10.1016/j.matdes.2013.11.046.
  • Hong, S.; Das, H.; Oh, H.; Alam, M. N. E.; Chun, N. D. Combination of Nano-Particle Deposition System and Friction Stir Spot Welding for Fabrication of Carbon/Aluminum Metal Matrix Composite Joints of Dissimilar Aluminum Alloys. CIRP Annals. 2017, 66, 261–264. DOI: 10.1016/j.cirp.2017.04.115.
  • Azizieh, M.; Kokabi, A. H.; Abachi, P. Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing. Mater. Des. 2011, 32, 2034–2041. DOI: 10.1016/j.matdes.2010.11.055.
  • Barenji, R. V.; Khojastehnezhad, V. M.; Pourasl, H. H.; Rabiezadeh, A. Wear Properties of Al–Al2O3/TiB2 Surface Hybrid Composite Layer Prepared by Friction Stir Process. J. Compos. Mater. 2016, 50(11). DOI: 10.1177/0021998315592007.
  • Zhang, Y.; Li, Q.; Guo, X.; Chen, Y. The Sintering Densification and Microstructure Evolutions of Ti-1Al-8V-5Fe Alloy with Si Additions. Mater. Manuf. Process. 2019, 34(8), 907–914. DOI: 10.1080/10426914.2019.1605176.
  • Akbari, M.; Shojaeefard, M. H.; Asadi, P.; Khalkhali, A. Wear and Mechanical Properties of Surface Hybrid Metal Matrix Composites on Al–Si Aluminum Alloys Fabricated by Friction Stir Processing. Mater. Des. Appl. 2017, 233(5), 790–799. DOI: 10.1177/1464420717702413.
  • Shojaeefard, M. H.; Akbari, M.; Khalkhali, A.; Asadi, P. Effect of Tool Pin Profile on Distribution of Reinforcement Particles during Friction Stir Processing of B4C/Aluminum Composites. Mater. Des. Appl. 2018, 232(8), 637–651. DOI: 10.1177/1464420716642471.
  • Du, Z.; Tan, M.; Guo, J.; Wei, J. Friction Stir Processing of Al–CNT Composites. Mater. Des. Appl. 2016, 230(3), 825–833. DOI: 10.1177/1464420715571189.
  • Huang, K. L.; Xing, C. L.; Huang, K. Al–Ni Intermetallic Composites Produced in Situ by Friction Stir Processing. J. Alloys Compd. 2010, 503, 3494–3499. DOI: 10.1016/j.jallcom.2010.05.040.
  • Ghamdi, K. A.; Hussain, G.; Hashemi, R. Fabrication of Metal-Matrix Al7075T651/TiN Nano Composite Employing Friction Stir Process. Eng. Manuf. 2017, 231(8), 1319–1331. DOI: 10.1177/0954405415596695.
  • Han, T.; Xiao, M.; Zhang, Y.; Shen, Y. Laser Cladding Composite Coatings by Ni–Cr–Ti–B4C with Different Process Parameters. Mater. Manuf. Process. 2019, 34(8), 898–906. DOI: 10.1080/10426914.2019.1605172.
  • Rathee, S.; Maheshwari, S.; Siddiquee, A. N.; Srivastava, M. A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems via Friction Stir Processing. Crit. Revi. Solid State 2018, 43(4), 334–366. DOI: 10.1080/10408436.2017.1358146.
  • Kumar, S. S.; Gopalakrishnan, S.; Dinaharan, I.; Kalaiselvan, K. Assessment of Microstructure and Wear Behavior of Aluminum Nitrate Reinforced Surface Composite Layers Synthesized Using Friction Stir Processing on Copper Substrate. Surf. Coat. Tech. 2017, 322, 51–58. DOI: 10.1016/j.surfcoat.2017.05.029.
  • Zeidabadi, S. R. H.; Fabrication, D. H. Characterization of In-situ Al/Nb Metal/Intermetallic Surface Composite by Friction Stir Processing. J. Mater. Sci. Eng. A 2017, 702, 189–195. DOI: 10.1016/j.msea.2017.03.014.
  • Janbozorgi, M.; Shamanian, M.; Sadeghian, M.; Sepehrinia, P. Improving Tribological Behavior of Friction Stir Processed A413/SiCp Surface Composite Using MoS2 Lubricant Particles. Trans. Nonferrous Met. Soc. China 2017, 27(2), 298–304. DOI: 10.1016/S1003-6326(17)60034-7.
  • Kishan, V.; Devaraju, A.; Lakshmi, K. P. Influence of Volume Percentage of Nano TiB2 Particles on Tribological & Mechanical Behaviour of 6061-T6 Al Alloy Nano-surface Composite. Definitive Technol. 2017, 13(1), 16–21. DOI: 10.1016/j.dt.2016.11.002.
  • Akbari, M.; Khalkhali, A.; Keshavarz, S. M. E.; Sarikhani, E. The Effect of In-Process Cooling Conditions on Temperature, Force, Wear Resistance, Microstructural, and Mechanical Properties of Friction Stir Processed A356. Mater. Des. Appl. 2016, 232(5), 429–436. DOI: 10.1177/1464420716630569.
  • Chandrasekar, P.; Natarajan, S.; Ramkumar, K. R. Influence of Carbide Reinforcements on Accumulative Roll Bonded Al 8011 Composites. Mater. Manuf. Process. 2019, 34(8), 889–897. DOI: 10.1080/10426914.2019.1594279.
  • Liu, P.; Li, Y.; Zhang, G.; Feng, K. Relation between Thermal Effect and Phase Transformation of Aluminium Matrix Surface Composite Adding Al-Based Amorphous Fabricated by FSP. VAC. 2016, 131, 65–68. DOI: 10.1016/j.vacuum.2016.06.002.
  • Khuntia, S. K.; Pani, B. B.; Nayak, S. Fabrication of Composites from Different Carbon Content Ferrous Powders Adopting Thermomechanical Processes. Mater. Manuf. Process. 2019, 34(8), 882–888. DOI: 10.1080/10426914.2019.1594251.
  • Ahmadifard, S.; Kazemi, S.; Heidarpou, A. Production and Characterization of A5083-Al2O3-TiO2 Hybrid Surface Nanocomposite by Friction Stir Processing. Mater. Des. Appl. 2018, 232(4), 287–293. DOI: 10.1177/1464420715623977.
  • Costa, M. I.; Verdera, D.; Leitão, C.; Rodrigues, D. M. Dissimilar Friction Stir Lap Welding of AA5754-H22/AA6082-T6 Aluminium Alloys: Influence of Material Properties and Tool Geometry on Weld Strength. Mater. Des. 2015, 87, 721–731. DOI: 10.1016/j.matdes.2015.08.066.
  • Srivastava, M.; Rathee, S.; Maheshwari, S.; Siddiquee, A. N.; Kundra, T. K. A. Review on Recent Progress in Solid State Friction Based Metal Additive Manufacturing: Friction Stir Additive Techniques. Crit. Rev. Solid State 2018. DOI: 10.1080/10408436.2018.1490250.
  • Bajakke, P. A.; Malik, V. R.; Deshpande, A. S. Particulate Metal Matrix Composites and Their Fabrication via Friction Stir Processing-A Review. Mater. Manuf. Process. 2019, 34(8), 833–881. DOI: 10.1080/10426914.2019.1605181.
  • Sun, J.; Zhao, J.; Gong, F.; Ni, X.; Li, Z. Development and Application of WC-Based Alloys Bonded with Alternative Binder Phase. Crit. Revi. Solid State 2019, 44(3), 211–238. DOI: 10.1080/10408436.2018.1483320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.