459
Views
13
CrossRef citations to date
0
Altmetric
Articles

A-TIG welding process for enhanced-penetration in Duplex stainless-steel: effect of activated fluxes

, ORCID Icon &
Pages 1659-1670 | Received 01 Apr 2019, Accepted 02 Sep 2019, Published online: 16 Sep 2019

References

  • Lippold, J. C.; Kotecki, D. J. Welding Metallurgy and Weldability of Stainless Steels; A John Wiley & Sons, Inc., Publication: New Jersey, 2005.
  • Verma, J.; Taiwade, R. V. Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments — A Review. J. Manuf. Process. 2017, 25, 134–152. DOI: 10.1016/j.jmapro.2016.11.003.
  • Reddy, G. M.; Rao, K. S.; Sekhar, T. Microstructure and Pitting Corrosion of Similar and Dissimilar Stainless Steel Welds. Sci. Technol. Weld. Join. 2008, 13(4), 363–377. DOI: 10.1179/174329308X299968.
  • Pramanik, A.; Littlefair, G.; Basak, A. K. Weldability of Duplex Stainless Steel. Mater. Manuf. Process. 2015, 30(9), 1053–1068. DOI: 10.1080/10426914.2015.1019126.
  • Reitz, W.;. A Review Of: “welding Metallurgy and Weldability of Stainless Steel. Mater. Manuf. Process. 2006, 21(2), 219. DOI: 10.1080/10426910500476747.
  • Wang, T. F.; Di, X. J.; Li, C. N.; Wang, J. M.; Wang, D. P. Effect of δ Phase on Microstructure and Hardness of Heat-Affected Zone in TIG-Welded GH4169 Superalloy. Acta Metall. Sin. (English Lett.). 2018, 10.1007/s4(123456789). DOI: 10.1007/s40195-018-0861-y.
  • Michalska, J.; Soza, M. Qualitative and Quantitative Analysis of σ and χ Phases in 2205 Duplex Stainless Steel. Mater. Charact. 2006, 56, 355–362. DOI: 10.1016/j.matchar.2005.11.003.
  • Nakhaei, R.; Khodabandeh, A.; Najafi, H. Effect of Active Gas on Weld Shape and Microstructure of Advanced A-TIG-Welded Stainless Steel. Acta Metall. Sin. (English Lett.). 2016, 29(3), 295–300. DOI: 10.1007/s40195-016-0381-6.
  • Lu, S.; Fujii, H.; Nogi, K. Weld Shape Variation and Electrode Oxidation Behavior under Ar-(Ar-CO2) Double Shielded GTA Welding. J. Mater. Sci. Technol. 2010, 26(2), 170–176. DOI: 10.1016/S1005-0302(10)60028-X.
  • Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P. Study of the Performance of Stainless Steel A-TIG Welds. J. Mater. Eng. Perform. 2008, 17(2), 193–201. DOI: 10.1007/s11665-007-9139-7.
  • Tseng, K. H.; Chen, P. Y. Effect of TiO2 Crystalline Phase on Performance of Flux Assisted GTA Welds. Mater. Manuf. Process. 2016, 31(3), 359–365. DOI: 10.1080/10426914.2015.1058952.
  • Kumar, H.; Ahmad, G. N.; Singh, N. K. Activated Flux TIG Welding of Inconel 718 Super Alloy in Presence of Tri-Component Flux. Mater. Manuf. Process. 2019, 34(2), 216–223. DOI: 10.1080/10426914.2018.1532581.
  • Vidyarthy, R. S.; Dwivedi, D. K.; Muthukumaran, V. Optimization of A-TIG Process Parameters Using Response Surface Methodology. Mater. Manuf. Process. 2018, 33(7), 709–717. DOI: 10.1080/10426914.2017.1303154.
  • Xu, Y. L.; Dong, Z. B.; Wei, Y. H.; Yang, C. L. Marangoni Convection and Weld Shape Variation in A-TIG Welding Process. Theor. Appl. Fract. Mech. 2007, 48(2), 178–186. DOI: 10.1016/j.tafmec.2007.05.004.
  • Bhattacharya, A.;. Revisiting Arc, Metal Flow Behavior in Flux Activated Tungsten Inert Gas Welding. Mater. Manuf. Process. 2016, 31(3), 343–351. DOI: 10.1080/10426914.2015.1070421.
  • Tathgir, S.; Bhattacharya, A.; Bera, T. K. Influence of Current and Shielding Gas in TiO2 Flux Activated Tig Welding on Different Graded Steels. Mater. Manuf. Process. 2015, 30(9), 1115–1123. DOI: 10.1080/10426914.2014.973591.
  • Tathgir, S.; Bhattacharya, A. Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas. Mater. Manuf. Process. 2016, 31(3), 335–342. DOI: 10.1080/10426914.2015.1037914.
  • Javadi, Y.; Akhlaghi, M.; Najafabadi, M. A. Nondestructive Evaluation of Welding Residual Stresses in Austenitic Stainless Steel Plates. Res. Nondestruct. Eval. 2014, 25(1), 30–43. DOI: 10.1080/09349847.2013.822134.
  • Vasantharaja, P.; Vasudevan, M. Studies on A-TIG Welding of Low Activation Ferritic/Martensitic (LAFM) Steel. J. Nucl. Mater. 2012, 421(1–3), 117–123. DOI: 10.1016/j.jnucmat.2011.11.062.
  • Niagaj, J.;. Peculiarities of A-TIG Welding of Titanium and Its Alloys. Arch. Metall. Mater. 2012, 57(1), 39–44. DOI: 10.2478/v10172-011-0150-5.
  • Tseng, K. H.;. Development and Application of Oxide-Based Flux Powder for Tungsten Inert Gas Welding of Austenitic Stainless Steels. Powder Technol. 2013, 233, 72–79. DOI: 10.1016/j.powtec.2012.08.038.
  • Rathod, D. W.; Pandey, S.; Aravindan, S.; Singh, P. K. Diffusion Control and Metallurgical Behavior of Successive Buttering on SA508 Steel Using Ni–Fe Alloy and Inconel 182. Metallogr. Microstruct. Anal. 2016, 5(5), 450–460. DOI: 10.1007/s13632-016-0311-z.
  • Rathod, D. W.; Pandey, S.; Aravindan, S.; Kumar, P. Metallurgical Behaviour and Carbon Diffusion in Buttering Deposits Prepared with and without Buffer Layers. Acta Metall. Sin. (English Lett.). 2017, 30(2), 120–132. DOI: 10.1007/s40195-016-0487-x.
  • Lu, S.; Fujii, H.; Nogi, K. Weld Shape Variation and Electrode Oxidation Behavior under Ar- (ar-co 2) Double Shielded GTA Welding. J. Mater. Sci. Technol. 2010, 26(2), 170–176.
  • Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, R.; Vasudevan, M.; Bhaduri, A. K. Optimization of Hybrid Laser – TIG Welding of 316LN Steel Using Response Surface Methodology (RSM). Opt. Lasers Eng. 2017, 94(November 2016), 27–36. DOI: 10.1016/j.optlaseng.2017.02.015.
  • Nagaraju, S.; Vasantharaja, P.; Chandrasekhar, N.; Vasudevan, M.; Jayakumar, T. Optimization of Welding Process Parameters for 9cr-1mo Steel Using RSM and GA. Mater. Manuf. Process. 2016, 31(3), 319–327. DOI: 10.1080/10426914.2015.1025974.
  • Sharma, P.; Dwivedi, D. K. Comparative Study of Activated Flux-GTAW and Multipass-GTAW Dissimilar P92 Steel-304H ASS Joints. Mater. Manuf. Process. 2019. DOI: 10.1080/10426914.2019.1605175.
  • Farrar, J. C. M.;. The Measurement of Ferrite Number (FN) in Real Weldments — Final Report. Weld. World. 2005, 49(Issue 5–6), 13–21. DOI: 10.1007/BF03263405.
  • Zou, Y.; Ueji, R.; Fujii, H. Effect of Oxygen on Weld Shape and Crystallographic Orientation of Duplex Stainless Steel Weld Using Advanced A-TIG (AA-TIG) Welding Method. Mater. Charact. 2014, 91, 42–49. DOI: 10.1016/j.matchar.2014.02.006.
  • Tusæk, J.; Suban, M. Experimental Research of the Effect of Hydrogen in Argon as a Shielding Gas in Arc Welding of High-Alloy Stainless Steel. Int. J. Hydrogen Energy. 2000, 25(25), 369–376. DOI: 10.1016/S0360-3199(99)00033-6.
  • Saluja, R.; Moeed, K. M. The Emphasis of Phase Transformations and Alloying Constituents on Hot Cracking Susceptibility of Type 304L and 316L Stainless Steel Welds. Int. J. Eng. Sci. Technol. 2012, 4(5), 2206–2216. DOI: 10.21829/abm118.
  • Paulraj, P.; Garg, R. Effect of Intermetallic Phases on Corrosion Behavior and Mechanical Properties of Duplex Stainless Steel and Super-Duplex Stainless Steel. Adv. Sci. Technol. Res. J. 2015, 9, 87–105. DOI: 10.12913/22998624/59090.
  • Zacharia, T.; David, S. A.; Vitek, J. M.; Debroy, T. Weld Pool Development during GTA and Laser Beam Welding of Type 304 Stainless Steel, Part I — Theoretical Analysis. Weld. J. Res. Suppl. 1989, 68(12), 499s To 509s.
  • Zacharia, T.; David, S. A.; Vitek, J. M.; Debroy, T. Weld Pool Development during GTA and Laser Beam Welding of Type 304 Stainless Steel, Part II — Experimental Correlation. Weld. J. Res. Suppl. 1989, 68(12), 510s–520s.
  • Kou, S.;. Welding Metallurgy, Second ed.; A John Wiley & Sons, Inc., Publication: New Jersey, 2003.
  • Blondeau, R.;. Metallurgy and Mechanics of Welding: Processes and Industrial Applications; A John Wiley & Sons, Inc., Publication: New Jersey, 2010. DOI: 10.1002/9780470611272.
  • Chen, J.; Zong, R.; Wu, C.; Padhy, G. K.; Hu, Q. Influence of Low Current Auxiliary TIG Arc on High Speed TIG-MIG Hybrid Welding. J. Mater. Process. Technol. 2017, 243, 131–142. DOI: 10.1016/j.jmatprotec.2016.12.012.
  • Sandwik. Sandvik Duplex Stainless Steels https://www.materials.sandvik/globalassets/global/downloads/products_downloads/tubular-products/s-120-eng_10.pdf (accessed Mar 3, 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.