737
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Influence of Pt and P doping on the performance of g-C3N4 monolayer

&
Pages 625-634 | Received 02 Apr 2019, Accepted 13 Sep 2019, Published online: 07 May 2020

References

  • Lan, D. H.; Wang, H. T.; Chen, L.; Au, C. T.; Yin, S. F. Phosphorous-modified Bulk Carbon Nitride: Facile Preparation and Application as an Acid-based Bifunctional and Efficient Catalyst for CO2 Cycloaddition with Epoxides. Carbon. 2016, 100, 81–89. DOI: 10.1016/j.carbon.2015.12.098.
  • Yue, B.; Li, Q.; Iwai, H.; Kako, T.; Ye, J. Hydrogen Production Using Zinc-doped Carbon Nitride Catalyst Irradiated with Visible Light. Sci. Technol. Adv. Mater. 2011, 12, 034401–034408. DOI: 10.1088/1468-6996/12/3/034401.
  • Xu, J. W.; Gao, Z. D.; Han, K.; Liu, Y.; Song, Y. Y. Synthesis of Magnetically Separable Ag3PO4/TiO2/Fe3O4 Heterostructure with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria. ACS Appl. Mater. Interfaces. 2014, 6, 15122–15131. DOI: 10.1021/am5032727.
  • Ding, G.; Wang, W.; Jiang, T.; Han, B.; Fan, H.; Yang, G. Highly Selective Synthesis of Phenol from Benzene over a Vanadium-doped Graphitic Carbon Nitride Catalyst. Chem. Cat. Chem. 2013, 5, 192–200.
  • Li, J.; Wang, D.; Liu, H.; Zhu, Z. Multilayered Mo-Doped TiO2 Nanofibers and Enhanced Photocatalytic Activity. Mater. Manuf. Processes. 2012, 27, 631–635. DOI: 10.1080/10426914.2011.593248.
  • Fu, L.; Yong, J.; Lai, G.; Tamanna, T.; Notley, S.; Yu, A. Nanocomposite Coating of Multilayered Carbon Nanotube–Titania. Mater. Manuf. Processes. 2014, 29, 1030–1036. DOI: 10.1080/10426914.2014.880465.
  • Bazrafshan, H.; Tesieh, Z. A.; Dabirnia, S.; Naderifar, A. Low-Temperature Synthesis of TiO2 Nanoparticles with High Photocatalytic Activity and Photoelectrochemical Properties through Sol-Gel Method. Mater. Manuf. Processes. 2016, 31, 119–125. DOI: 10.1080/10426914.2015.1037899.
  • Xu, J.; Sun, P.; Zhang, X.; Jiang, P.; Cao, W.; Chen, P.; Jin, H. Synthesis of N-doped TiO2 with Different Nitrogen Concentrations by Mild Hydrothermal Method. Mater. Manuf. Processes. 2014, 29, 1162–1167. DOI: 10.1080/10426914.2014.921697.
  • Dante, R. C.; In-Ramos, P. M.; Navas-Gracia, L. M.; Evalo, F. M. S.; In-Gil, J. M. Polymeric Carbon Nitride Nanosheets. J. Macromol. Sci., Part B: Phys. 2013, 52, 623–631. DOI: 10.1080/00222348.2012.716336.
  • Ramesh, K.; Prashantha, M.; Reddy, N. K.; Gopal, E. S. R. Synthesis of Nano Structured Carbon Nitride by Pyrolysis Assisted Chemical Vapour Deposition. Integr. Ferroelectr. 2010, 117, 40–48. DOI: 10.1080/10584587.2010.489421.
  • Cai, L.;. Enhanced Visible-light Photocatalytic Activity of BiOCl by Compositing with G- C3N4. Mater. Res. Innovations. 2015, 19(5), 392–396. DOI: 10.1179/1433075X15Y.0000000047.
  • Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Layered Nanojunctions for Hydrogen-evolution Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3621–3625. DOI: 10.1002/anie.201210294.
  • Chen, X.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light. Chem. Mater. 2009, 21, 4093–4095. DOI: 10.1021/cm902130z.
  • Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Earth-abundant Co-catalysts for Semiconductor-based Photocatalytic Water Splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. DOI: 10.1039/c3cs60425j.
  • Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution. Adv. Mater. 2014, 26, 805–809. DOI: 10.1002/adma.201402404.
  • Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation Performance of GCN Fabricated by Directly Heating Melamine. Langmuir. 2009, 25, 10397–10401. DOI: 10.1021/la900923z.
  • Zimmerman, J. I.; Williams, R.; Khabashesku, V. N.; Margrave, J. I. Preparation of Sphere-shaped Nanoscale Carbon Nitride Polymer. Russ. Chem. Bull. 2001, 50, 2020–2027.
  • Huang, Y.; Wang, Y. J.; Bi, Y. Q.; Jin, J. R.; Ehsan, M. F.; Fu, M.; He, T. Preparation of 2D Hydroxyl-rich Carbon Nitride Nanosheets for Photocatalytic Reduction of CO2. RSC Adv. 2015, 5, 33254–33261. DOI: 10.1039/C5RA04227E.
  • Yan, H. Q.;. Soft-templating Synthesis of Mesoporous Graphitic Carbon Nitride with Enhanced Photocatalytic H2 Evolution under Visible Light. Chem. Commun. 2012, 48, 3430–3432. DOI: 10.1039/c2cc00001f.
  • Dante, R. C.; Sánchez-Arévalo, F. M.; Huerta, L.; Muñoz-Bisesti, F.; Marquez, D.; Martín Ramos, P.; Lartundo-Rojas, L.; Chamorro-Posada, P.; Solorza-Feria, O. Photocatalytic Activity of New Composite Material of Fe (III) Oxide Nanoparticles Wrapped by a Matrix of Polymeric Carbon Nitride and Amorphous Carbon. Fullerenes, Nanotubes, Carbon Nanostruct. 2017, 25(11), 630–636. DOI: 10.1080/1536383X.2017.1362397.
  • Zhao, Z.; Ma, Y.; Fan, J.; Xue, Y.; Chang, H.; Masubuchi, Y.; Yin, S. Synthesis of Graphitic Carbon Nitride from Different Precursors by Fractional Thermal Polymerization Method and Their Visible-light-induced Photocatalytic Activities. J. Alloys Compd. 2018, 735, 1297–1305. DOI: 10.1016/j.jallcom.2017.11.033.
  • Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Phosphorus-doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation. J. Am. Chem. Soc. 2010, 132, 6294–6295. DOI: 10.1021/ja101749y.
  • Zhang, L.; Chen, X.; Guan, J.; Jiang, Y.; Hou, T.; Mu, X. Facile Synthesis of Phosphorus Doped Graphitic Carbon Nitride Polymers with Enhanced Visible-light Photocatalytic Activity. Mater. Res. Bull. 2013, 48, 3485–3491. DOI: 10.1016/j.materresbull.2013.05.040.
  • Hu, S. Z.; Ma, L.; Yu, J. G.; Li, F. Y.; Fan, Z. P.; Wang, F.; Liu, D.; Gui, J. Z. A Simple and Efficient Method to Prepare Phosphorus Modified g-C3N4 Visible Light Photocatalyst. RSC Adv. 2014, 4, 21657–21663. DOI: 10.1039/C4RA02284J.
  • Zhou, Y.; Zhang, L.; Liu, J.; Fan, X.; Wang, B.; Wang, M.; Ren, W.; Wang, J.; Li, M.; Shi, J. Brand New P-doped g-C3N4: Enhanced Photocatalytic Activity for H2 Evolution and Rhodamine B Degradation under Visible Light. J. Mater. Chem. A. 2015, 3, 3862–3867. DOI: 10.1039/C4TA05292G.
  • Zhu, Y. P.; Ren, T. Z.; Yuana, Z. Y. Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Appl. Mater. Interfaces. 2015, 7, 16850–16856. DOI: 10.1021/acsami.5b04947.
  • Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nano Structure for Enhanced Visible-Light Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 1830–1834. DOI: 10.1002/anie.201508505.
  • Chai, B.; Yan, J.; Wang, C.; Ren, Z.; Zhu, Y. Enhanced Visible-light Photocatalytic Degradation of Rhodamine B over Phosphorus-doped Graphitic Carbon Nitride. Appl. Surf. Sci. 2017, 391(B), 376–383.
  • Ran, J.; Ma, T. Y.; Gao, G.; Du, X. W.; Qiao, S. Z. Porous P-doped Graphitic Carbon Nitride Nanosheets for Synergistically Enhanced Visible-light Photocatalytic H2 Production. Energy Environ. Sci. 2015, 8, 3708–3717. DOI: 10.1039/C5EE02650D.
  • Pan, H.; Zhang, Y.; Shenoy, V. B.; Gao, H. Ab Initio Study on a Novel Photocatalyst: Functionalized Graphitic Carbon Nitride Nanotube. ACS Catal. 2011, 1, 99–104. DOI: 10.1021/cs100045u.
  • Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Single Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution. Adv. Mater. 2016, 28, 2427–2431. DOI: 10.1002/adma.201505281.
  • Gao, G.; Jiao, Y.; Waclawik, E. R.; Du, A. Single-atom (pd/pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-light Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297. DOI: 10.1021/jacs.6b02692.
  • Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set. J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54(35), 11169–11186. DOI: 10.1103/PhysRevB.54.11169.
  • Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Blöchl, P. E.;. Projector Augmented-wave Method. Phys. Rev. B. 1994, 50, 17953–17979. DOI: 10.1103/PhysRevB.50.17953.
  • Blöchl, P. E.; Kästner, J.; Först, C. J. Electronic Structure Methods: Augmented Waves, Pseudopotentials and the Projector Augmented Wave Method. In Handbook of Materials Modeling; Yip, S., Ed.;  Springer: Netherlands, 2005; pp 93–119.
  • Rostgaard, C.;. The Projector Augmented-wave Method. Condensed Matter Materials Science, arXiv:0910.1921v2, Cornell University, 2009, 1–25.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  • Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for Mixing Exact Exchange with Density Functional Approximations. J. Chem. Phys. 1996, 105, 9982–9985. DOI: 10.1063/1.472933.
  • Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-state Electron Density and Free-atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005–073009. DOI: 10.1103/PhysRevLett.102.073005.
  • Kundu, T. K.; Misra, D. A First-principles Study of the Optical Properties of Pure and Doped LaNiO3. Adv. Mater. Lett. 2016, 7(5), 344–348. DOI: 10.5185/amlett.2016.6105.
  • Mahan, G. D.;. Many-particle Physics, 3rd ed.; Plenum Press: New York, 1990.
  • Guo, L.; Li, W.; Feng, W.; Zhang, Z.; Zhang, S. Thermodynamics, Core-level Spectroscopy, Morphology, and Work Function Study of Different TiCl3 Crystalline Phases: A Theoretical Approach. J. Alloys Compd. 2014, 602, 66–71. DOI: 10.1016/j.jallcom.2014.03.001.
  • Zhang, X.; Zhao, M.; Wang, A.; Wang, X.; Du, A. Spin-polarization and Ferromagnetism of Graphitic Carbon Nitride Materials. J. Mater. Chem. C. 2013, 1, 6265–6270. DOI: 10.1039/c3tc31213e.
  • Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. DOI: 10.1038/nmat2317.
  • Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. First Principle Investigation of Halogen Doped Monolayer g-C3N4 Photocatalyst. Appl. Catal. B. 2017, 207, 27–34. DOI: 10.1016/j.apcatb.2017.02.020.
  • Cao, S.; Huang, Q.; Zhu, B.; Yu, J. Trace-level Phosphorus and Sodium Co-doping of G- C3N4 for Enhanced Photocatalytic H2 Production. J. Power Sources. 2017, 351, 151–159. DOI: 10.1016/j.jpowsour.2017.03.089.
  • Basharnavaz, H.; Yangjeh, A. H.; Kamali, S. H. A First-principles Study on the Interaction of CO Molecules with VIII Transition Metals-embedded Graphitic Carbon Nitride as an Excellent Candidate for CO Sensors. Phys. Lett. A. 2019, 383, 2472–2480. DOI: 10.1016/j.physleta.2019.05.013.
  • Tripathy, S. K. Refractive Indices of Semiconductors from Energy Gaps. Opt. Mater. 2015, 46, 240–246. DOI: 10.1016/j.optmat.2015.04.026.
  • Srinivasu, K.; Modak, B.; Ghosh, S. K. Porous Graphitic Carbon Nitride: A Possible Metal- Free Photocatalyst for Water Splitting. J. Phys. Chem. C. 2014, 118(46), 26479–26484. DOI: 10.1021/jp506538d.
  • Becke, A. D.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. DOI: 10.1063/1.458517.
  • Misra, D.; Kundu, T. K. Strain-Controlled Transport Mechanism in Strongly Correlated LaNiO3. J. Electron. Mat. 2017, 46, 150–157. DOI: 10.1007/s11664-016-4889-3.
  • Pang, N.; Wang, T.; Cui, Y.; Hu, J. New Dispersive Solid-phase Extraction Sorbent of Graphitic Carbon Nitride for Field Evaluation and Dissipation Kinetics of Pesticides in the Wheat Ecosystem by Liquid Chromatography-tandem Mass Spectrometry. Int. J. Environ. Anal. Chem. 2016, 96(12), 1156–1169. DOI: 10.1080/03067319.2016.1243672.
  • Sun, L.; Qi, Y.; Jia, C. J.; Jin, Z.; Fan, W. Enhanced Visible-light Photocatalytic Activity of g-C3N4/Zn2GeO4 Heterojunctions with Effective Interfaces Based on Band Match. Nanoscale. 2014, 6, 2649–2659. DOI: 10.1039/c3nr06104c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.