362
Views
20
CrossRef citations to date
0
Altmetric
Articles

Formability of an AA5083 aluminum alloy T-joint using SSFSW on both corners

, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1737-1744 | Received 21 Jun 2019, Accepted 15 Sep 2019, Published online: 25 Sep 2019

References

  • Martchek, K.;. Modelling More Sustainable Aluminium. Int. J. Life Cycle Assess. 2006, 11, 34–37. DOI: 10.1065/lca2006.01.231.
  • Setiawan, W.; Darmadi, D. B.; Suprapto, W.; Soenoko, R.; Tri, S. G. Varied Corner Joint Design Alumuinum 6061 Uing Friction Stir Welding. IOP Conf. Ser. Mater. Sci. Eng. 2019, 494, 1–17. DOI: 10.1088/1757-899X/494/1/012106.
  • Fratini, L.; Buffa, G.; Monaco, L. L. Improved FE Model for Simulation of Friction Stir Welding of Different Materials. Sci. Technol. Weld. Joining. 2010, 15, 199–207. DOI: 10.1179/136217110X12665048207575.
  • Gemme, F.; Verreman, Y.; Dubourg, L.; Wanjara, P. Effect of Welding Parameters on Microstructure and Mechanical Properties of AA7075-T6 Friction Stir Welded Joints. Fatigue Fract. Eng. Mater. Struct. 2011, 34, 877–886. DOI: 10.1111/j.1460-2695.2011.01580.x.
  • Thomas, W. M.; Nicholas, E. D.; Needham, J. C.; Murch, M. G.; Templesmith, P.; Dawes, C. J. Friction-stir Butting Welding, 1991, GB Patent No: 9125978.8, International patent No: PCT/GB92/02203.
  • Li, H.; Gao, J.; Li, Q.; Galloway, A.; Toumpis, A. Effect of Friction Stir Welding Tool Design on Welding Thermal Efficiency. Sci. Technol. Weld. Joining. 2019, 24, 156–162. DOI: 10.1080/13621718.2018.1495868.
  • Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Wang, K. S.; Ma, Z. Y. Material Flow and Void Defect Formation in Friction Stir Welding of Aluminium Alloys. Sci. Technol. Weld. Joining. 2018, 23, 677–686. DOI: 10.1080/13621718.2018.1471844.
  • Rajesh, S.; Badheka, V. J. Process Parameters/material Location Affecting Hooking in Friction Stir Lap Welding: Dissimilar Aluminum Alloys. Mater. Manuf. Processes. 2018, 33, 323–332. DOI: 10.1080/10426914.2017.1317798.
  • Ma, Z. Y.; Feng, A. H.; Chen, D. L.; Shen, J. Recent Advances in Friction Stir Welding/processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties. Crit. Rev. Solid State Mater. Sci. 2018, 43, 269–333. DOI: 10.1080/10408436.2017.1358145.
  • Martin, J. P.; Stanhope, C.; Gascoyne, S. Novel Techniques for Corner Joints Using Friction Stir Welding. In Mishra, R.; Mahoney, M. W.; Sato, Y.; Hovanski, Y.; Verma, R.;, editors; Friction Stir Welding and Processing VI; Wiley: Hoboken, 2011; pp 179–186.
  • Jiang, X.; Wynne, B. P.; Martin, J. Microstructure and Texture Evolution of Stationary Shoulder Friction Stir Welded Ti6Al4V Alloy. Sci. Technol. Weld. Joining. 2015, 20, 594–600. DOI: 10.1179/1362171815Y.0000000043.
  • Patel, V.; Li, W.; Xu, Y. Stationary Shoulder Tool in Friction Stir Processing: A Novel Low Heat Input Tooling System for Magnesium Alloy. Mater. Manuf. Processes. 2019, 34, 177–182. DOI: 10.1080/10426914.2018.1544716.
  • Patel, V.; Li, W.; Wen, Q. Surface Analysis of Stationary Shoulder Friction Stir Processed AZ31B Magnesium Alloy. Mater. Sci. Technol. 2019, 35, 628–631. DOI: 10.1080/02670836.2019.1570692.
  • Sun, T.; Roy, M. J.; Strong, D.; Simpson, C.; Withers, P. J.; Prangnell, P. B. Weld Zone and Residual Stress Development in AA7050 Stationary Shoulder Friction Stir T-joint Weld. J. Mater. Process. Technol. 2019, 263, 256–265. DOI: 10.1016/j.jmatprotec.2018.08.022.
  • Li, D.; Yang, X.; Cui, L.; He, F.; Zhang, X. Fatigue Property of Stationary Shoulder Friction Stir Welded Additive and Non-additive T Joints. Sci. Technol. Weld. Joining. 2015, 20, 650–654. DOI: 10.1179/1362171815Y.0000000045.
  • Maggiolini, E.; Benasciutti, D.; Susmel, L.; Hattingh, D. G.; James, M. N.; Tovo, R. Friction Stir Welds in Aluminium: Design S-N Curves from Statistical Analysis of Literature Data. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 2212–2230. DOI: 10.1111/ffe.v41.11.
  • Elwasli, F.; Zemzemi, F.; Mkaddem, A.; Mzali, S.; Mezlini, S. A 3D Multi-scratch Test Model for Characterizing Material Removal Regimes in 5083-al Alloy. Mater. Des. 2015, 87, 352–362. DOI: 10.1016/j.matdes.2015.07.121.
  • Hossfeld, M.; Roos, E. A New Approach to Modelling Friction Stir Welding Using the CEL Method. In Int. Conf. Adv. Manuf. Eng. Technol, Stockholm, 2013; pp 179–190. DOI: 10.1111/j.1532-849X.2012.00923.x.
  • Schmidt, H.; Hattel, J. A Local Model for the Thermomechanical Conditions in Friction Stir Welding. Modell. Simul. Mater. Sci. Eng. 2004, 13, 77–93. DOI: 10.1088/0965-0393/13/1/006.
  • Al-Badour, F.; Merah, N.; Shuaib, A.; Bazoune, A. Thermo-mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys. Int. J. Adv. Manuf. Technol. 2014, 72, 607–617. DOI: 10.1007/s00170-014-5680-3.
  • Wen, Q.; Li, W. Y.; Gao, Y. J.; Yang, J.; Wang, F. F. Numerical Simulation and Experimental Investigation of Band Patterns in Bobbin Tool Friction Stir Welding of Aluminum Alloy. Int. J. Adv. Manuf. Technol. 2019, 100, 2679–2687. DOI: 10.1007/s00170-018-2750-y.
  • Liu, H. J.; Li, J. Q.; Duan, W. J. Friction Stir Welding Characteristics of 2219-T6 Aluminum Alloy Assisted by External Non-rotational Shoulder. Int. J. Adv. Manuf. Technol. 2013, 64, 1685–1694. DOI: 10.1007/s00170-012-4132-1.
  • Niu, P. L.; Li, W. Y.; Chen, D. L. Strain Hardening Behavior and Mechanisms of Friction Stir Welded Dissimilar Joints of Aluminum Alloys. Mater. Lett. 2018, 231, 68–71. DOI: 10.1016/j.matlet.2018.08.009.
  • Imam, M.; Sun, Y.; Fujii, H., .; Ma, N., .; Tsutsumi, S.; Murakawa, H. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy. Metall. Mater. Trans. A. 2017, 48, 208–229. DOI: 10.1007/s11661-016-3819-6.
  • Saravanakumar, R.; Krishna, K.; Rajasekaran, T.; Siranjeevi, S. Investigations on Friction Stir Welding of AA5083-H32 Marine Grade Aluminium Alloy by the Effect of Varying the Process Parameters. IOP Conf. Ser. Mater. Sci. Eng. 2018, 402, 1–12. DOI: 10.1088/1757-899X/402/1/012187.
  • Vijayan, S.; Raju, R.; Rao, S. K. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy AA 5083 Using Taguchi-based Grey Relation Analysis. Mater. Manuf. Processes. 2010, 25, 1206–1212. DOI: 10.1080/10426910903536782.
  • Meyghani, B.; Awang, M. A Comparison between the Flat and the Curved Friction Stir Welding (FSW) Thermomechanical Behaviour. Arch. Comput. Methods Eng. 2019, 1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.