935
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Drilling and structural property study of multi-layered fiber and fabric reinforced polymer composite - a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1549-1579 | Received 09 Jul 2019, Accepted 23 Oct 2019, Published online: 19 Nov 2019

References

  • Barbero, E. J. Introduction to Composite Materials Design; CRC press: Boca Raton, USA, 2017. DOI: 10.1201/9781315296494.
  • Mazumdar, S. Composites Manufacturing: Materials, Product, and Process Engineering; CRC press: Boca Raton, USA, 2001. DOI: 10.1201/9781420041989.
  • Waurzyniak, P. Aerospace Automation Stretches beyond Drilling and Filling. Manuf. Eng. 2015, 154, 73–86.
  • Sridharan, S. Delamination Behaviour of Composites; Woodhead Publishing: Cambridge, England, 2008. DOI: 10.1533/9781845694821.
  • Khashaba, U. A. Delamination in Drilling GFR-Thermoset Composites. Compos. Struct. 2004, 63, 313–327. DOI: 10.1016/s0263-8223(03)00180-6.
  • Zitoune, R.; Collombet, F.; Lachaud, F.; Piquet, R.; Pasquet, P. Experiment-Calculation Comparison of the Cutting Conditions Representative of the Long Fiber Composite Drilling Phase. Compos. Sci. Technol. 2005, 65, 455–466. DOI: 10.1016/j.compscitech.2004.09.028.
  • Nassar, S. A.; Yang, X. Fastening and Joining of Composite Materials. Conf. Proc. Soc. Exp. Mech. Ser. 2013. DOI: 10.1007/978-1-4614-4553-1_2.
  • Ameur, M. F.; Habak, M.; Kenane, M.; Aouici, H.; Cheikh, M. Machinability Analysis of Dry Drilling of Carbon/Epoxy Composites: Cases of Exit Delamination and Cylindricity Error. Int. J. Adv. Manuf. Technol. 2017, 88, 2557–2571. DOI: 10.1007/s00170-016-8967-8.
  • Ponnuvel, S.; Prem Ananth, M. Effect of Specific Surface Area of MWCNTs on Surface Roughness and Delamination in Drilling Epoxy/Glass Fabric Composite. Mater. Res. Express. 2018, 5. DOI: 10.1088/2053-1591/aab647.
  • Mohan, N. S.; Ramachandra, A.; Kulkarni, S. M. Influence of Process Parameters on Cutting Force and Torque during Drilling of Glass-Fiber Polyester Reinforced Composites. Compos. Struct. 2005, 71, 407–413. DOI: 10.1016/j.compstruct.2005.09.039.
  • Potluri, P.; Atkinson, J. Automated Manufacture of Composites: Handling, Measurement of Properties and Lay-Up Simulations. Compos. Part A Appl. Sci. Manuf. 2003, 34, 493–501. DOI: 10.1016/s1359-835x(03)00056-3.
  • Fan, Z.; Santare, M. H.; Advani, S. G. Interlaminar Shear Strength of Glass Fiber Reinforced Epoxy Composites Enhanced with Multi-Walled Carbon Nanotubes. Compos. Part A Appl. Sci. Manuf. 2008, 39, 540–554. DOI: 10.1016/j.compositesa.2007.11.013.
  • Quinn, J. P.; McIlhagger, A. T.; McIlhagger, R. Examination of the Failure of 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 273–283. DOI: 10.1016/j.compositesa.2007.10.012.
  • Qin, W.; Vautard, F.; Drzal, L. T.; Yu, J. Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber-Matrix Interphase. Compos. Part B Eng. 2015, 69, 335–341. DOI: 10.1016/j.compositesb.2014.10.014.
  • Flake, C. C. Structural Composite Materials; ASM International: Ohio, 2010.
  • He, H.; Gao, F. Resin Modification on Interlaminar Shear Property of Carbon Fiber/Epoxy/Nano-CaCO3 Hybrid Composites. Polym. Compos. 2017, 38, 2035–2042. DOI: 10.1002/pc.23775.
  • Wang, Y.; Raman Pillai, S. K.; Che, J.; Chan-Park, M. B. High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber-and Matrix-Anchored Carbon Nanotube Networks. ACS Appl. Mater. Interfaces. 2017, 9, 8960–8966. DOI: 10.1021/acsami.6b13197.
  • Pathak, A. K.; Borah, M.; Gupta, A.; Yokozeki, T.; Dhakate, S. R. Improved Mechanical Properties of Carbon Fiber/Graphene oxide-Epoxy Hybrid Composites. Compos. Sci. Technol. 2016, 135, 28–38. DOI: 10.1016/j.compscitech.2016.09.007.
  • Shivamurthy, B.; Murthy, K.; Anandhan, S. Tribology and Mechanical Properties of Carbon Fabric/MWCNT/Epoxy Composites. Adv. Tribol. 2018, 2018, 1–10. DOI: 10.1155/2018/1508145.
  • Poveda, R. L.; Gupta, N. Carbon Nanofiber Reinforced Polymer Composites; Springer: Cham, Switzerland, 2015. DOI: 10.1007/978-3-319-23787-9.
  • Lee, D.; Song, S. H.; Hwang, J.; Jin, S. H.; Park, K. H.; Kim, B. H.; Hong, S. H.; Jeon, S. Enhanced Mechanical Properties of Epoxy Nanocomposites by Mixing Noncovalently Functionalized Boron Nitride Nanoflakes. Small. 2013, 9, 2602–2610. DOI: 10.1002/smll.201203214.
  • Dai, Z.; Zhang, B.; Shi, F.; Li, M.; Zhang, Z.; Gu, Y. Effect of Heat Treatment on Carbon Fiber Surface Properties and Fibers/Epoxy Interfacial Adhesion. Appl. Surf. Sci. 2011, 257, 8457–8461. DOI: 10.1016/j.apsusc.2011.04.129.
  • Wang, Y.; Zhao, D. Effect of Fabric Structures on the Mechanical Properties of 3-D Textile Composites. J. Ind. Text. 2006, 35, 239–256. DOI: 10.1177/1528083706057595.
  • Gerlach, R.; Siviour, C. R.; Wiegand, J.; Petrinic, N. In-plane and Through-Thickness Properties, Failure Modes, Damage and Delamination in 3d Woven Carbon Fibre Composites Subjected to Impact Loading. Compos. Sci. Technol. 2012, 72, 397–411. DOI: 10.1016/j.compscitech.2011.11.032.
  • Stegschuster, G.; Pingkarawat, K.; Wendland, B.; Mouritz, A. P. Experimental Determination of the Mode I Delamination Fracture and Fatigue Properties of Thin 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 308–315. DOI: 10.1016/j.compositesa.2016.02.008.
  • Stig, F. 3D-woven Reinforcement in Composites. Ph.D. Thesis, KTH Royal Institute of Technology, 2012.
  • Rudov-Clark, S. Experimental Investigation of the Tensile Properties and Failure Mechanisms of Three-Dimensional Woven Composites. Ph.D. Thesis, RMIT Univ, 2007.
  • Warren, K. C.; Lopez-Anido, R. A.; Goering, J. Experimental Investigation of Three-Dimensional Woven Composites. Compos. Part A Appl. Sci. Manuf. 2015, 73, 242–259. DOI: 10.1016/j.compositesa.2015.03.011.
  • Huang, T.; Wang, Y.; Wang, G. Review of the Mechanical Properties of a 3D Woven Composite and Its Applications. Polym. – Plast. Technol. Eng. 2018, 57, 740–756. DOI: 10.1080/03602559.2017.1344857.
  • Brink Van den, W. M.; Vrie, G.; Nawijn, M. Modelling and Simulation of Damage in Woven Fabric Composites on Meso-Macro Level Using the Independent Mesh Method. Int. J. Mater. Eng. Innov. 2013, 4, 84–100. DOI: 10.1504/ijmatei.2013.054389.
  • Shetty, N.; Shahabaz, S. M.; Sharma, S. S.; Divakara Shetty, S. A Review on Finite Element Method for Machining of Composite Materials. Compos. Struct. 2017, 176, 790–802. DOI: 10.1016/j.compstruct.2017.06.012.
  • Wu, C. Q.; Gao, G. L.; Li, H. N.; Luo, H. Effects of Machining Conditions on the Hole Wall Delamination in Both Conventional and Ultrasonic-assisted CFRP Drilling. Int. J. Adv. Manuf. Technol. 2019, 1–15. DOI: 10.1007/s00170-019-04052-y.
  • Abish, J.; Samal, P.; Narenther, M. S.; Kannan, C.; Balan, A. S. S. Assessment of Drilling-Induced Damage in CFRP under Chilled Air Environment. Mater. Manuf. Process. 2018, 33, 1361–1368. DOI: 10.1080/10426914.2017.1415452.
  • Xia, T.; Kaynak, Y.; Arvin, C.; Jawahir, I. S. Cryogenic Cooling-Induced Process Performance and Surface Integrity in Drilling CFRP Composite Material. Int. J. Adv. Manuf. Technol. 2016, 82, 605–616. DOI: 10.1007/s00170-015-7284-y.
  • Prisco, U.; Impero, F.; Rubino, F. Peck Drilling of CFRP/Titanium Stacks: Effect of Tool Wear on Hole Dimensional and Geometrical Accuracy. Prod. Eng. 2019, 1–10. DOI: 10.1007/s11740-019-00915-1.
  • Impero, F.; Dix, M.; Squillace, A.; Prisco, U.; Palumbo, B.; Tagliaferri, F. A Comparison between Wet and Cryogenic Drilling of CFRP/Ti Stacks. Mater. Manuf. Process. 2018, 33(12), 1354–1360. DOI: 10.1080/10426914.2018.1453162.
  • Che, D.; Saxena, I.; Han, P.; Guo, P.; Ehmann, K. F. Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review. J. Manuf. Sci. Eng. 2014, 136, 034001. DOI: 10.1115/1.4026526.
  • Altin Karataş, M.; Gökkaya, H. A Review on Machinability of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) Composite Materials. Def. Technol. 2018, 14, 318–326. DOI: 10.1016/j.dt.2018.02.001.
  • Phadnis, V. A.; Makhdum, F.; Roy, A.; Silberschmidt, V. V. Drilling in Carbon/Epoxy Composites: Experimental Investigations and Finite Element Implementation. Compos. Part A Appl. Sci. Manuf. 2013, 47, 41–51. DOI: 10.1016/j.compositesa.2012.11.020.
  • Panchagnula, K. K.; Palaniyandi, K. Drilling on Fiber Reinforced Polymer/Nanopolymer Composite Laminates: A Review. J. Mater. Res. Technol. 2018, 7, 180–189. DOI: 10.1016/j.jmrt.2017.06.003.
  • Sheikh-Ahmad, J. Y. Machining of Polymer Composites; Springer: Boston, Massachusetts, 2009. DOI: 10.1007/978-0-387-68619-6.
  • Abrão, A. M.; Faria, P. E.; Rubio, J. C. C.; Reis, P.; Davim, J. P. Drilling of Fiber Reinforced Plastics: A Review. J. Mater. Process. Technol. 2007, 186, 1–7. DOI: 10.1016/j.jmatprotec.2006.11.146.
  • Isbilir, O.; Ghassemieh, E. Delamination and Wear in Drilling of Carbon-Fiber Reinforced Plastic Composites Using Multilayer TiAlN/TiN PVD-coated Tungsten Carbide Tools. J. Reinf. Plast. Compos. 2012, 31, 717–727. DOI: 10.1177/0731684412444653.
  • Durão, L. M. P.; Tavares, J. M. R.; António, G. M.; António, T. M.; Baptista, A. P. M. Damage Analysis of Carbon/Epoxy Plates after Drilling. Int. J. Mater. Prod. Technol. 2008, 32, 226–242. DOI: 10.1504/ijmpt.2008.018983.
  • Rajakumar, I.; Hariharan, P.; Srikanth, I. A Study on Monitoring the Drilling of Polymeric Nanocomposite Laminates Using Acoustic Emission. J. Compos. Mater. 2013, 47, 1773–1784. DOI: 10.1177/0021998312451299.
  • Lal, A.; Singh, B. N.; Kumar, R. Natural Frequency of Laminated Composite Plate Resting on an Elastic Foundation with Uncertain System Properties. Struct. Eng. Mech. 2007, 27, 199–222. DOI: 10.12989/sem.2007.27.2.199.
  • Harper, C. Handbook of Plastics, Elastomers, and Composites; McGraw-Hill: New York, 2002. DOI: 10.1002/0471459216.app10.
  • Holmes, M. Global Carbon Fibre Market Remains on Upward Trend. Reinf. Plast. 2014, 58, 38–45. DOI: 10.1016/s0034-3617(14)70251-6.
  • Kumar, D.; Singh, K. K. Investigation of Delamination and Surface Quality of Machined Holes in Drilling of Multiwalled Carbon Nanotube Doped Epoxy/Carbon Fiber Reinforced Polymer Nanocomposite. Proc. Inst. Mech. Eng. Part. L J. Mater. Des. Appl. 2017, 1–17. DOI: 10.1177/1464420717692369.
  • De Cicco, D.; Asaee, Z.; Taheri, F. Use of Nanoparticles for Enhancing the Interlaminar Properties of Fiber-Reinforced Composites and Adhesively Bonded Joints—A Review. Nanomaterials. 2017, 7, 360. DOI: 10.3390/nano7110360.
  • Das Chakladar, N.; Pal, S. K.; Mandal, P. Drilling of Woven Glass Fiber-Reinforced Plastic - an Experimental and Finite Element Study. Int. J. Adv. Manuf. Technol. 2012, 58, 267–278. DOI: 10.1007/s00170-011-3386-3.
  • Wicks, S. S.; De. Villoria, R. G.; Wardle, B. L. Interlaminar and Intralaminar Reinforcement of Composite Laminates with Aligned Carbon Nanotubes. Compos. Sci. Technol. 2010, 70, 20–28. DOI: 10.1016/j.compscitech.2009.09.001.
  • Soliman, E.; Kandil, U.; Taha, M. R. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs. Materials (Basel). 2014, 7, 4640–4657. DOI: 10.3390/ma7064640.
  • Wang, Z.; Huang, X.; Bai, L.; Du, R.; Liu, Y.; Zhang, Y.; Zhao, G. Effect of Micro-Al2O3 Contents on Mechanical Property of Carbon Fiber Reinforced Epoxy Matrix Composites. Compos. Part B Eng. 2016, 91, 392–398. DOI: 10.1016/j.compositesb.2016.01.052.
  • Liu, F.; Deng, S.; Zhang, J. Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles. J. Nanomater. 2017, 1–9. DOI: 10.1155/2017/8146248.
  • Johnsen, B. B.; Kinloch, A. J.; Mohammed, R. D.; Taylor, A. C.; Sprenger, S. Toughening Mechanisms of Nanoparticle-Modified Epoxy Polymers. Polymer (Guildf). 2007, 48, 530–541. DOI: 10.1016/j.polymer.2006.11.038.
  • Díez-Pascual, A. M.; Naffakh, M. Tuning the Properties of Carbon Fiber-Reinforced Poly(Phenylene sulphide) Laminates via Incorporation of Inorganic Nanoparticles. Polymer (Guildf). 2012, 53, 2369–2378. DOI: 10.1016/j.polymer.2012.04.010.
  • Ulus, H.; Üstün, T.; Eskizeybek, V.; Şahin, Ö. S.; Avci, A.; Ekrem, M. Boron Nitride-MWCNT/Epoxy Hybrid Nanocomposites: Preparation and Mechanical Properties. Appl. Surf. Sci. 2014, 318, 37–42. DOI: 10.1016/j.apsusc.2013.12.070.
  • Yavari, F.; Rafiee, M. A.; Rafiee, J.; Yu, Z. Z.; Koratkar, N. Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites. ACS. Appl. Mater. Interfaces. 2010, 2, 2738–2743. DOI: 10.1021/am100728r.
  • Zhang, X.; Fan, X.; Yan, C.; Li, H.; Zhu, Y.; Li, X.; Yu, L. Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide. ACS. Appl. Mater. Interfaces. 2012, 4, 1543–1552. DOI: 10.1021/am201757v.
  • Zaghloul, M. M. Y.; Zaghloul, M. Y. M.; Zaghloul, M. M. Y. Experimental and Modeling Analysis of Mechanical-Electrical Behaviors of Polypropylene Composites Filled with Graphite and MWCNT Fillers. Polym. Test. 2017, 63, 467–474. DOI: 10.1016/j.polymertesting.2017.09.009.
  • Chandrasekaran, V. C. S.; Santare, M. H.; Krishnan, P.; Advani, S. G. Amino Functionalization of MWNTs and Their Effect on ILSS of Hybrid Nanocomposites. Compos. Interfaces. 2011, 18, 339–355. DOI: 10.1163/092764411x584478.
  • Zaldivar, R. J.; Kim, H. I.; Steckel, G. L.; Nokes, J. P.; Morgan, B. A. Effect of Processing Parameter Changes on the Adhesion of Plasma-Treated Carbon Fiber Reinforced Epoxy Composites. J. Compos. Mater. 2010, 44, 1435–1453. DOI: 10.1177/0021998309355846.
  • Vautard, F.; Ozcan, S.; Meyer, H. Properties of Thermo-Chemically Surface Treated Carbon Fibers and of Their Epoxy and Vinyl Ester Composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1120–1133. DOI: 10.1016/j.compositesa.2012.02.018.
  • Severini, F.; Formaro, L.; Pegoraro, M.; Posca, L. Chemical Modification of Carbon fiber Surfaces. Carbon. 2002, 40, 735–741. DOI: 10.1016/s0008-6223(01)00180-4.
  • Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi, R.; Pinson, J.; Savéant, J.-M. Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. J. Am. Chem. Soc. 1997, 119, 201–207. DOI: 10.1021/ja963354s.
  • Hodgkinson, J. M. Mechanical Testing of Advanced Fibre Composites; Woodhead Publishing: Cambridge, England, 2012. DOI: 10.1533/9781855738911.
  • Avila, A. F.; Morais, D. T. S. A Multiscale Investigation Based on Variance Analysis for Hand Lay-Up Composite Manufacturing. Compos. Sci. Technol. 2005, 65, 827–838. DOI: 10.1016/j.compscitech.2004.05.021.
  • Khan, H. A.; Hassan, A.; Saeed, M. B.; Mazhar, F.; Chaudhary, I. A. Finite Element Analysis of Mechanical Properties of Woven Composites through a Micromechanics Model. Sci. Eng. Compos. Mater. 2017, 24, 87–99. DOI: 10.1515/secm-2014-0266.
  • Vaganov, G.; Yudin, V.; Vuorinen, J.; Molchanov, E. Influence of Multiwalled Carbon Nanotubes on the Processing Behavior of Epoxy Powder Compositions and on the Mechanical Properties of Their Fiber Reinforced Composites. Polym. Compos. 2016, 37, 2377–2383. DOI: 10.1002/pc.23419.
  • He, X.; Zhang, F.; Wang, R.; Liu, W. Preparation of a Carbon Nanotube/Carbon Fiber Multi-Scale Reinforcement by Grafting Multi-Walled Carbon Nanotubes onto the Fibers. Carbon. 2007, 45, 2559–2563. DOI: 10.1016/j.carbon.2007.08.018.
  • Moaseri, E.; Karimi, M.; Maghrebi, M.; Baniadam, M. Fabrication of Multi-Walled Carbon Nanotube-Carbon Fiber Hybrid Material via Electrophoretic Deposition Followed by Pyrolysis Process. Compos. Part A Appl. Sci. Manuf. 2014, 60, 8–14. DOI: 10.1016/j.compositesa.2014.01.009.
  • Komeya, K.; Matsui, M. High Temperature Engineering Ceramics. Materials Science and Technology; Wiley Online Library: Weinheim, Germany, 2006. DOI: 10.1002/9783527603978.mst0126.
  • Alsaadi, M.; Ugla, A. A.; Erklig, A. A Comparative Study on the Interlaminar Shear Strength of Carbon, Glass, and Kevlar Fabric/Epoxy Laminates Filled with SiC Particles. J. Compos. Mater. 2017, 51, 2835–2844. DOI: 10.1177/0021998317701559.
  • Byrd, L. W.; Birman, V. Effectiveness of Z-Pins in Preventing Delamination of Co-Cured Composite Joints on the Example of a Double Cantilever Test. Compos. Part B Eng. 2006, 37, 365–378. DOI: 10.1016/j.compositesb.2005.05.019.
  • Zhang, X.; Hounslow, L.; Grassi, M. Improvement of Low-Velocity Impact and Compression-After-Impact Performance by Z-Fibre Pinning. Compos. Sci. Technol. 2006, 66, 2785–2794. DOI: 10.1016/j.compscitech.2006.02.029.
  • Ansar, M.; Xinwei, W.; Chouwei, Z. Modeling Strategies of 3D Woven Composites: A Review. Compos. Struct. 2011, 93, 1947–1963. DOI: 10.1016/j.compstruct.2011.03.010.
  • Saleh, M. N.; Yudhanto, A.; Potluri, P.; Lubineau, G.; Soutis, C. Characterising the Loading Direction Sensitivity of 3D Woven Composites: Effect of Z-Binder Architecture. Compos. Part A Appl. Sci. Manuf. 2016, 90, 577–588. DOI: 10.1016/j.compositesa.2016.08.028.
  • Tong, L.; Mouritz, A. P. 3D Fibre Reinforced Polymer Composites; Elsevier Science Publishing: Oxford, UK, 2002.
  • Bogdanovich, A. E. 3D Translaminar and Textile Reinforcements for Composites. Encycl. Aerosp. Eng. John Wiley Sons Ltd. 2010, 4. DOI: 10.1002/9780470686652.eae205.
  • Muñoz, R.; Martínez, V.; Sket, F.; González, C.; Llorca, J. Mechanical Behavior and Failure Micromechanisms of Hybrid 3D Woven Composites in Tension. Compos. Part A Appl. Sci. Manuf. 2014, 59, 93–104. DOI: 10.1016/j.compositesa.2014.01.003.
  • Pora, J. Composite Materials in the Airbus A380-from History to Future. In International Conference on Composite Materials (ICCM13), Beijing, China, Plenary lecture; 25–29th June; 2001; 1–10.
  • Jewell, J.; Kennedy, R.; Lecarrié, G. Full-Scale Leap Fan Blade-Out Rig Test Yields Outstanding Results; Advanced Leap Fan Endurance Test Complete. CFM Power Flight. 2011. https://www.cfmaeroengines.com.
  • Mouritz, A. P.; Cox, B. N. A Mechanistic Interpretation of the Comparative In-Plane Mechanical Properties of 3D Woven, Stitched and Pinned Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 709–728. DOI: 10.1016/j.compositesa.2010.02.001.
  • Dai, S.; Cunningham, P. R.; Marshall, S.; Silva, C. Influence of Fibre Architecture on the Tensile, Compressive and Flexural Behaviour of 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2015, 69, 195–207. DOI: 10.1016/j.compositesa.2014.11.012.
  • Saleh, M. N.; Soutis, C. Recent Advancements in Mechanical Characterisation of 3D Woven Composites. Mech. Adv. Mater. Mod. Process. 2017, 3, 12. DOI: 10.1186/s40759-017-0027-z.
  • Umer, R.; Alhussein, H.; Zhou, J.; Cantwell, W. J. The Mechanical Properties of 3D Woven Composites. J. Compos. Mater. 2017, 51, 1703–1716. DOI: 10.1177/0021998316681187.
  • Bilisik, K. Multiaxis 3D Woven Preform and Properties of Multiaxis 3D Woven and 3D Orthogonal Woven Carbon/Epoxy Composites. J. Reinf. Plast. Compos. 2010, 29, 1173–1186. DOI: 10.1177/0731684409103153.
  • Leong, K. H.; Lee, B.; Herszberg, I.; Bannister, M. K. The Effect of Binder Path on the Tensile Properties and Failure of Multilayer Woven CFRP Composites. Compos. Sci. Technol. 2000, 60, 149–156. DOI: 10.1016/s0266-3538(99)00108-6.
  • Stig, F.; Hallström, S. Assessment of the Mechanical Properties of a New 3D Woven Fibre Composite Material. Compos. Sci. Technol. 2009, 69, 1686–1692. DOI: 10.1016/j.compscitech.2008.04.047.
  • Walter, T. R.; Subhash, G.; Sankar, B. V.; Yen, C. F. Monotonic and Cyclic Short Beam Shear Response of 3D Woven Composites. Compos. Sci. Technol. 2010, 70, 2190–2197. DOI: 10.1016/j.compscitech.2010.08.022.
  • Fishpool, D. T.; Rezai, A.; Baker, D.; Ogin, S. L.; Smith, P. A. Interlaminar Toughness Characterisation of 3D Woven Carbon Fibre Composites. Plast. Rubber Compos. 2013, 42, 108–114. DOI: 10.1179/1743289812y.0000000036.
  • Labanieh, A. R.; Liu, Y.; Vasiukov, D.; Soulat, D.; Panier, S. Influence of Off-axis In-plane Yarns on the Mechanical Properties of 3D Composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 45–57. DOI: 10.1016/j.compositesa.2017.03.009.
  • Geier, N.; Szalay, T. Optimisation of Process Parameters for the Orbital and Conventional Drilling of Uni-Directional Carbon Fibre-Reinforced Polymers (UD-CFRP). Meas. J. Int. Meas. Confed. 2017, 110, 319–334. DOI: 10.1016/j.measurement.2017.07.007.
  • Wang, G. D.; Li, N.; Xiong, X.; Chong, Q.; Zhou, L.; Lu, S. 3D Level Comprehensive Evaluation of Hole Quality in Drilling Carbon Fiber-Reinforced Plastics. Int. J. Adv. Manuf. Technol. 2017, 93, 2433–2445. DOI: 10.1007/s00170-017-0614-5.
  • Tsao, C. C.; Hocheng, H. Evaluation of Thrust Force and Surface Roughness in Drilling Composite Material Using Taguchi Analysis and Neural Network. J. Mater. Process. Technol. 2008, 203, 342–348. DOI: 10.1016/j.jmatprotec.2006.04.126.
  • Davim, J. P.; Reis, P. Drilling Carbon Fiber Reinforced Plastics Manufactured by Autoclave-Experimental and Statistical Study. Mater. Des. 2003, 24, 315–324. DOI: 10.1016/s0261-3069(03)00062-1.
  • Gaitonde, V. N.; Karnik, S. R.; Rubio, J. C.; Correia, A. E.; Abrão, A. M.; Davim, J. P. Analysis of Parametric Influence on Delamination in High-Speed Drilling of Carbon Fiber Reinforced Plastic Composites. J. Mater. Process. Technol. 2008, 203, 431–438. DOI: 10.1016/j.jmatprotec.2007.10.050.
  • Raj, D. S.; Karunamoorthy, L. Study of the Effect of Tool Wear on Hole Quality in Drilling CFRP to Select a Suitable Drill for Multi-Criteria Hole Quality. Mater. Manuf. Process. 2016, 31, 587–592. DOI: 10.1080/10426914.2015.1004713.
  • Al-wandi, S.; Ding, S.; Mo, J. An Approach to Evaluate Delamination Factor When Drilling Carbon Fiber-reinforced Plastics Using Different Drill Geometries: Experiment and Finite Element Study. Int. J. Adv. Manuf. Technol. 2017, 93, 4043–4061. DOI: 10.1007/s00170-017-0880-2.
  • Fernandes, M.; Cook, C. Drilling of Carbon Composites Using a One Shot Drill Bit. Part I: Five Stage Representation of Drilling and Factors Affecting Maximum Force and Torque. Int. J. Mach. Tools. Manuf. 2006, 46, 70–75. DOI: 10.1016/j.ijmachtools.2005.03.015.
  • Eneyew, E. D.; Ramulu, M. Experimental Study of Surface Quality and Damage When Drilling Unidirectional CFRP Composites. J. Mater. Res. Technol. 2014, 3, 354–362. DOI: 10.1016/j.jmrt.2014.10.003.
  • Gaitonde, V. N.; Karnik, S. R.; Rubio, J. C.; Correia, A. E.; Abrão, A. M.; Davim, J. P. A Study Aimed at Minimizing Delamination during Drilling of CFRP Composites. J. Compos. Mater. 2011, 45, 2359–2368. DOI: 10.1177/0021998311401087.
  • Phapale, K.; Ahire, A.; Singh, R. Experimental Characterization and Finite Element Modeling of Critical Thrust Force in CFRP Drilling. Mach. Sci. Technol. 2018, 22, 249–270. DOI: 10.1080/10910344.2017.1337134.
  • Khashaba, U. A. Drilling of Polymer Matrix Composites: A Review. J. Compos. Mater. 2013, 47, 1817–1832. DOI: 10.1177/0021998312451609.
  • Heidary, H.; Karimi, N. Z.; Minak, G. Investigation on Delamination and Flexural Properties in Drilling of Carbon Nanotube/Polymer Composites. Compos. Struct. 2018, 201, 112–120. DOI: 10.1016/j.compstruct.2018.06.041.
  • Mohan, N. S.; Kulkarni, S. M.; Ramachandra, A. Delamination Analysis in Drilling Process of Glass Fiber Reinforced Plastic (GFRP) Composite Materials. J. Mater. Process. Technol. 2007, 186, 265–271. DOI: 10.1016/j.jmatprotec.2006.12.043.
  • Shetty, N.; Herbert, M. A.; Shetty, R.; Shetty, D. S.; Vijay, G. S. Soft Computing Techniques during Drilling of Bi-Directional Carbon Fiber Reinforced Composite. Appl. Soft. Comput. J. 2016, 41, 466–478. DOI: 10.1016/j.asoc.2016.01.016.
  • Karpat, Y.; Deger, B.; Bahtiyar, O. Drilling Thick Fabric Woven CFRP Laminates with Double Point Angle Drills. J. Mater. Process. Technol. 2012, 212, 2117–2127. DOI: 10.1016/j.jmatprotec.2012.05.017.
  • Tsao, C. C.; Chiu, Y. C. Evaluation of Drilling Parameters on Thrust Force in Drilling Carbon Fiber Reinforced Plastic (CFRP) Composite Laminates Using Compound Core-Special Drills. Int. J. Mach. Tools. Manuf. 2011, 51, 740–744. DOI: 10.1016/j.ijmachtools.2011.05.004.
  • Durante, M.; Boccarusso, L.; De Fazio, D.; Langella, A. Circular Cutting Strategy for Drilling of Carbon Fiber-Reinforced Plastics (Cfrps). Mater. Manuf. Process. 2019, 34, 554–566. DOI: 10.1080/10426914.2019.1566615.
  • Feito, N.; Díaz-Álvarez, J.; Díaz-Álvarez, A.; Cantero, J. L.; Miguélez, M. H. Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs. Materials (Basel). 2014, 7, 4258–4271. DOI: 10.3390/ma7064258.
  • Harris, M.; Qureshi, M. A. M.; Saleem, M. Q.; Khan, S. A.; Bhutta, M. M. A. Carbon Fiber-Reinforced Polymer Composite Drilling via Aluminum Chromium Nitride-Coated Tools: Hole Quality and Tool Wear Assessment. J. Reinf. Plast. Compos. 2017, 36, 1403–1420. DOI: 10.1177/0731684417709359.
  • Debnath, K.; Singh, I.; Srivatsan, T. S. An Innovative Tool for Engineering Good-Quality Holes in Composite Laminates. Mater. Manuf. Process. 2017, 32, 952–957. DOI: 10.1080/10426914.2016.1221084.
  • Luo, B.; Li, Y.; Zhang, K.; Cheng, H.; Liu, S. Effect of Workpiece Stiffness on Thrust Force and Delamination in Drilling Thin Composite Laminates. J. Compos. Mater. 2016, 50, 617–625. DOI: 10.1177/0021998315580449.
  • Lazar, M. B.; Xirouchakis, P. Experimental Analysis of Drilling Fiber Reinforced Composites. Int. J. Mach. Tools. Manuf. 2011, 51, 937–946. DOI: 10.1016/j.ijmachtools.2011.08.009.
  • Feito, N.; Diaz-Álvarez, A.; Cantero, J. L.; Rodríguez-Millán, M.; Miguélez, H. Experimental Analysis of Special Tool Geometries When Drilling Woven and Multidirectional CFRPs. J. Reinf. Plast. Compos. 2016, 35, 33–55. DOI: 10.1177/0731684415612931.
  • Gupta, M. K.; Srivastava, R. K. Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polym.-Plast. Technol. Eng. 2016, 55, 626–642. DOI: 10.1080/03602559.2015.1098694.
  • Tan, C. L.; Azmi, A. I.; Muhammad, N. Delamination and Surface Roughness Analyses in Drilling Hybrid Carbon/Glass Composite. Mater. Manuf. Process. 2016, 31, 1366–1376. DOI: 10.1080/10426914.2015.1103864.
  • Köklü, U.; Demir, O.; Avcı, A.; Etyemez, A. Drilling Performance of Functionally Graded Composite: Comparison with Glass and Carbon/Epoxy Composites. J. Mech. Sci. Technol. 2017, 31, 4703–4709. DOI: 10.1007/s12206-017-0916-4.
  • Rana, S.; Alagirusamy, R.; Joshi, M. A Review on Carbon Epoxy Nanocomposites. J. Reinf. Plast. Compos. 2009, 28, 461–487. DOI: 10.1177/0731684407085417.
  • Li, N.; Li, Y.; Zhou, J.; He, Y.; Hao, X. Drilling Delamination and Thermal Damage of Carbon Nanotube/Carbon Fiber Reinforced Epoxy Composites Processed by Microwave Curing. Int. J. Mach. Tools. Manuf. 2015, 97, 11–17. DOI: 10.1016/j.ijmachtools.2015.06.005.
  • Priya, I. I. M.; Vinayagam, B. K. Investigation of Drilling Parameters Using Grey Relational Analysis and Response Surface Methodology of Biaxial Glass Fibre Reinforced with Modified Epoxy Resin Composite. Int. J. Polym. Sci. 2018, 1–12. DOI: 10.1155/2018/8629894.
  • Anand, G.; Alagumurthi, N.; Palanikumar, K.; Venkateshwaran, N.; Elansezhain, R. Influence of Drilling Process Parameters on Hybrid Vinyl Ester Composite. Mater. Manuf. Process. 2018, 33, 1299–1305. DOI: 10.1080/10426914.2018.1453161.
  • Premnath, A. A. Drilling Studies on Carbon Fiber-Reinforced Nano-SiC Particles Composites Using Response Surface Methodology. Part. Sci. Technol. 2019, 37, 474–482. DOI: 10.1080/02726351.2017.1398795.
  • Nayak, S. Y.; Heckadka, S. S.; Sadanand, R. V.; Bharadwaj, K.; Pokharna, H. M.; Sanjeev, A. R. 2D Woven/3D Orthogonal Woven Non-crimp E-glass Fabric as Reinforcement in Epoxy Composites Using Vacuum Assisted Resin Infusion Molding. J. Eng. Fiber. Fabr. 2017, 12, 2. DOI: 10.1177/155892501701200202.
  • Cadorin, N.; Zitoune, R.; Seitier, P.; Collombet, F. Analysis of Damage Mechanism and Tool Wear while Drilling of 3D Woven Composite Materials Using Internal and External Cutting Fluid. J. Compos. Mater. 2015, 49, 2687–2703. DOI: 10.1177/0021998314553045.
  • Shyha, I.; Soo, S. L.; Aspinwall, D.; Bradley, S. Effect of Laminate Configuration and Feed Rate on Cutting Performance When Drilling Holes in Carbon Fibre Reinforced Plastic Composites. J. Mater. Process. Technol. 2010, 210, 1023–1034. DOI: 10.1016/j.jmatprotec.2010.02.011.
  • Sardinas, R. Q.; Reis, P.; Davim, J. P. Multi-objective Optimization of Cutting Parameters for Drilling Laminate Composite Materials by Using Genetic Algorithms. Compos. Sci. Technol. 2006, 66, 3083–3088. DOI: 10.1016/j.compscitech.2006.05.003.
  • Park, K. Y.; Choi, J. H.; Lee, D. G. Delamination-Free and High Efficiency Drilling of Carbon Fiber Reinforced Plastics. J. Compos. Mater. 1995, 29, 1988–2002. DOI: 10.1177/002199839502901503.
  • Piquet, R.; Ferret, B.; Lachaud, F.; Swider, P. Experimental Analysis of Drilling Damage in Thin Carbon/Epoxy Plate Using Special Drills. Compos. Part. A Appl. Sci. Manuf. 2000, 31, 1107–1115. DOI: 10.1016/s1359-835x(00)00069-5.
  • Durão, L. M. P.; Gonçalves, D. J. S.; Tavares, J. M. R. S.; de Albuquerque, V. H. C.; Aguiar Vieira, A.; Torres Marques, A. Drilling Tool Geometry Evaluation for Reinforced Composite Laminates. Compos. Struct. 2010, 92, 1545–1550. DOI: 10.1016/j.compstruct.2009.10.035.
  • Zitoune, R.; Collombet, F. Numerical Prediction of the Thrust Force Responsible of Delamination during the Drilling of the Long-Fibre Composite Structures. Compos. Part A Appl. Sci. Manuf. 2007, 38, 858–866. DOI: 10.1016/j.compositesa.2006.07.009.
  • Rawat, S.; Attia, H. Wear Mechanisms and Tool Life Management of WC-Co Drills during Dry High Speed Drilling of Woven Carbon Fibre Composites. Wear. 2009, 267, 1022–1030. DOI: 10.1016/j.wear.2009.01.031.
  • Iliescu, D.; Gehin, D.; Gutierrez, M. E.; Girot, F. Modeling and Tool Wear in Drilling of CFRP. Int. J. Mach. Tools. Manuf. 2010, 50, 204–213. DOI: 10.1016/j.ijmachtools.2009.10.004.
  • Xu, J.; An, Q.; Cai, X.; Chen, M. Drilling Machinability Evaluation on New Developed High-Strength T800S/250F CFRP Laminates. Int. J. Precis. Eng. Manuf. 2013, 14, 1687–1696. DOI: 10.1007/s12541-013-0252-2.
  • Davim, J. P.; Rubio, J. C.; Abrao, A. M. A Novel Approach Based on Digital Image Analysis to Evaluate the Delamination Factor after Drilling Composite Laminates. Compos. Sci. Technol. 2007, 67, 1939–1945. DOI: 10.1016/j.compscitech.2006.10.009.
  • Tsao, C. C.; Hocheng, H. Taguchi Analysis of Delamination Associated with Various Drill Bits in Drilling of Composite Material. Int. J. Mach. Tools. Manuf. 2004, 44, 1085–1090. DOI: 10.1016/j.ijmachtools.2004.02.019.
  • Tsao, C. C.; Hocheng, H. The Effect of Chisel Length and Associated Pilot Hole on Delamination When Drilling Composite Materials. Int. J. Mach. Tools. Manuf. 2003, 43, 1087–1092. DOI: 10.1016/s0890-6955(03)00127-5.
  • Tsao, C. C.; Hocheng, H. Computerized Tomography and C-Scan for Measuring Delamination in the Drilling of Composite Materials Using Various Drills. Int. J. Mach. Tools. Manuf. 2005, 45, 1282–1287. DOI: 10.1016/j.ijmachtools.2005.01.009.
  • Tsao, C. C.; Hocheng, H. Parametric Study on Thrust Force of Core Drill. J. Mater. Process. Technol. 2007, 192–193, 37–40. DOI: 10.1016/j.jmatprotec.2007.04.062.
  • Hocheng, H.; Tsao, C. C. Effects of Special Drill Bits on Drilling-Induced Delamination of Composite Materials. Int. J. Mach. Tools. Manuf. 2006, 46, 1403–1416. DOI: 10.1016/j.ijmachtools.2005.10.004.
  • Tsao, C. C. Prediction of Thrust Force of Step Drill in Drilling Composite Material by Taguchi Method and Radial Basis Function Network. Int. J. Adv. Manuf. Technol. 2008, 36, 11–18. DOI: 10.1007/s00170-006-0808-8.
  • Karnik, S. R.; Gaitonde, V. N.; Rubio, J. C.; Correia, A. E.; Abrão, A. M.; Davim, J. P. Delamination Analysis in High Speed Drilling of Carbon Fiber Reinforced Plastics (CFRP) Using Artificial Neural Network Model. Mater. Des. 2008, 29, 1768–1776. DOI: 10.1016/j.matdes.2008.03.014.
  • Marques, A. T.; Durão, L. M.; Magalhães, A. G.; Silva, J. F.; Tavares, J. M. R. S. Delamination Analysis of Carbon Fibre Reinforced Laminates: Evaluation of a Special Step Drill. Compos. Sci. Technol. 2009, 69, 2376–2382. DOI: 10.1016/j.compscitech.2009.01.025.
  • Isbilir, O.; Ghassemieh, E. Numerical Investigation of the Effects of Drill Geometry on Drilling Induced Delamination of Carbon Fiber Reinforced Composites. Compos. Struct. 2013, 105, 126–133. DOI: 10.1016/j.compstruct.2013.04.026.
  • Gaitonde, V. N.; Karnik, S. R.; Rubio, J. C. C.; De Oliveira Leite, W.; Davim, J. P. Experimental Studies on Hole Quality and Machinability Characteristics in Drilling of Unreinforced and Reinforced Polyamides. J. Compos. Mater. 2014, 48, 21–36. DOI: 10.1177/0021998312467552.
  • Marathe, A. B.; Javali, A. M. Effect of Drilling Parameters on Specific Cutting Energy and Delamination of a Composite Made of Unsaturated Polyester Resin and Chopped Glass Fibres. J. Thermoplast. Compos. Mater. 2014, 1–21. DOI: 10.1177/0892705714563121.
  • Shyha, I. S.; Aspinwall, D. K.; Soo, S. L.; Bradley, S. Drill Geometry and Operating Effects When Cutting Small Diameter Holes in CFRP. Int. J. Mach. Tools. Manuf. 2009, 49, 1008–1014. DOI: 10.1016/j.ijmachtools.2009.05.009.
  • Faraz, A.; Biermann, D.; Weinert, K. Cutting Edge Rounding: An Innovative Tool Wear Criterion in Drilling CFRP Composite Laminates. Int. J. Mach. Tools. Manuf. 2009, 49, 1185–1196. DOI: 10.1016/j.ijmachtools.2009.08.002.
  • Fernandes, M.; Cook, C. Drilling of Carbon Composites Using a One Shot Drill Bit. Part II: Empirical Modeling of Maximum Thrust Force. Int. J. Mach. Tools. Manuf. 2006, 46, 76–79. DOI: 10.1016/j.ijmachtools.2005.03.016.
  • Cantwell, W. J.; Day, R. The Impact Resistance of Fiber Metal Laminates and Hybrid Materials. In Impact Engineering of Composite Structures, Abrate S, Ed.; Springer: Vienna, 2011; pp 265–304. DOI:10.1007/978-3-7091-0523-8_6.
  • Jakubczak, P.; Surowska, B.; Bieniaś, J. Evaluation of Force-Time Changes during Impact of Hybrid Laminates Made of Titanium and Fibrous Composite. Arch. Metall. Mater. 2016, 61(2), 689–694. DOI: 10.1515/amm-2016-0117.
  • Najafi, M.; Darvizeh, A.; Ansari, R. Effect of Salt Water Conditioning on Novel Fiber Metal Laminates for Marine Applications. Proc. Inst. Mech. Eng. Part L. 2019, 233(8), 1542–1554. DOI: 10.1177/1464420718767946.
  • Sinmazçelik, T.; Avcu, E.; Bora, M. Ö.; Çoban, O. A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods. Mater. Des. 2011, 32(7), 3671–3685. DOI: 10.1016/j.matdes.2011.03.011.
  • Turner, J.; Scaife, R. J.; El-Dessouky, H. M. Effect of Machining Coolant on Integrity of CFRP Composites. Adv. Manuf. 2015, 1(1), 54–60. DOI: 10.1179/2055035914y.0000000008.
  • Caggiano, A. Machining of Fibre Reinforced Plastic Composite Materials. Materials. 2018, 11(3), 442. DOI: 10.3390/ma11030442.
  • Wang, F.; Qian, B.; Jia, Z.; Cheng, D.; Fu, R. Effects of Cooling Position on Tool Wear Reduction of Secondary Cutting Edge Corner of One-shot Drill Bit in Drilling CFRP. Int. J. Adv. Manuf. Technol. 2018, 94(9–12), 4277–4287. DOI: 10.1007/s00170-017-1103-6.
  • Senthilkumar, M.; Prabukarthi, A.; Krishnaraj, V. Machining of CFRP/Ti6Al4V Stacks under Minimal Quantity Lubricating Condition. J. Mech. Sci. Technol. 2018, 32(8), 3787–3796. DOI: 10.1007/s12206-018-0731-6.
  • Fernández-Pérez, J.; Cantero, J. L.; Díaz-Álvarez, J.; Miguélez, M. H. Hybrid Composite-Metal Stack Drilling with Different Minimum Quantity Lubrication Levels. Materials. 2019, 12(3), 448. DOI: 10.3390/ma12030448.
  • Xu, J.; Ji, M.; Chen, M.; Ren, F. Investigation of Minimum Quantity Lubrication Effects in Drilling CFRP/Ti6Al4V Stacks. Mater. Manuf. Process. September, 2019, 1–10. (Published online). DOI: 10.1080/10426914.2019.1661431.
  • Florian, D. Challenges for Drilling; Fraunhofer Institute for Production Technology: Germany, 2019. https://www.vibrocool-project.eu/en/overview/challenges.html
  • Rahamathullah, I.; Shunmugam, M. S. Analyses of Forces and Hole Quality in Micro-Drilling of Carbon Fabric Laminate Composites. J. Compos. Mater. 2013, 47, 1129–1140. DOI: 10.1177/0021998312445594.
  • Rodden, W. S. O.; Kudesia, S. S.; Hand, D. P.; Jones, J. D. C. A Comprehensive Study of the Long Pulse Nd: YAGLaser Drilling of Multi-Layer Carbon Fibre Composites. Opt. Commun. 2002, 210, 319–328. DOI: 10.1016/s0030-4018(02)01807-2.
  • Anand, R. S.; Patra, K. Cutting Force and Hole Quality Analysis in Micro-Drilling of CFRP. Mater. Manuf. Process. 2018, 33, 1369–1377. DOI: 10.1080/10426914.2017.1401715.
  • Babu, J.; Sunny, T.; Paul, N. A.; Mohan, K. P.; Philip, J.; Davim, J. P. Assessment of Delamination in Composite Materials: A Review. P. I. Mech. Eng. B-J. Eng. 2016, 230(11), 1990–2003. DOI: 10.1177%2F0954405415619343.
  • Chen, W. C. Some Experimental Investigations in the Drilling of Carbon Fiber-Reinforced Plastic (CFRP) Composite Laminates. Int. J. Mach. Tools. Manuf. 1997, 37, 1097–1108. DOI: 10.1016/s0890-6955(96)00095-8.
  • El-Sonbaty, I.; Khashaba, U. A.; Machaly, T. Factors Affecting the Machinability of GFR/Epoxy Composites. Compos. Struct. 2004, 63, 329–338. DOI: 10.1016/s0263-8223(03)00181-8.
  • O’higgins, R. M. Experimental and Numerical Study of the Open-Hole Tensile Strength of Carbon/Epoxy Composites. Mech. Compos. Mater. 2004, 40, 269–278. DOI: 10.1023/b:mocm.0000039744.98869.0d.
  • Dai, S.; Cunningham, P. R.; Marshall, S.; Silva, C. Open Hole Quasi-Static and Fatigue Characterisation of 3D Woven Composites. Compos. Struct. 2015, 131, 765–774. DOI: 10.1016/j.compstruct.2015.06.032.
  • Saleh, M. N.; Wang, Y.; Yudhanto, A.; Joesbury, A.; Potluri, P.; Lubineau, G.; Constantinos, S. Investigating the Potential of Using off-Axis 3D Woven Composites in Composite Joints’ Applications. Appl. Compos. Mater. 2017, 24, 377–396. DOI: 10.1007/s10443-016-9529-9.
  • Green, B. G.; Wisnom, M. R.; Hallett, S., . R. An Experimental Investigation into the Tensile Strength Scaling of Notched Composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 867–878. DOI: 10.1016/j.compositesa.2006.07.008.
  • Erçin, G. H.; Camanho, P. P.; Xavier, J.; Catalanotti, G.; Mahdi, S.; Linde, P. Size Effects on the Tensile and Compressive Failure of Notched Composite Laminates. Compos. Struct. 2013, 96, 736–744. DOI: 10.1016/j.compstruct.2012.10.004.
  • Arshad, M. Damage Tolerance of 3D Woven Composites with Weft Binders. Doctoral dissertation, The University of Manchester, 2014.
  • Warren, K. C.; Lopez-Anido, R. A.; Goering, J. Behavior of Three-Dimensional Woven Carbon Composites in Single-Bolt Bearing. Compos. Struct. 2015, 127, 175–184. DOI: 10.1016/j.compstruct.2015.03.022.
  • Abdullah, M. S.; Abdullah, A.; Hassan, B.; Samad, M. H.; Bearing Strength, Z. Progressive Failure Analysis of the Punched Hole of CFRP under Tensile Loading. Int. J. Adv. Manuf. Technol. 2018, 97, 2163–2171. DOI: 10.1007/s00170-018-2091-x.
  • Öndürücü, A.; Esendemir, Ü.; Tunay, R. F. Progressive Failure Analysis of Glass-Epoxy Laminated Composite Pinned-Joints. Mater. Des. 2012, 36, 617–625. DOI: 10.1016/j.matdes.2011.11.031.
  • Kelly, G.; Hallstro, S. Bearing Strength of Carbon Fibre/Epoxy Laminates : Effects of Bolt-Hole Clearance. Compos. Part B Eng. 2004, 35, 331–343. DOI: 10.1016/j.compositesb.2003.11.001.
  • Khashaba, U. A.; Sebaey, T. A.; Alnefaie, K. A. Failure and Reliability Analysis of Pinned-Joints Composite Laminates : Effects of Stacking Sequences. Compos. Part B Eng. 2013, 45, 1694–1703. DOI: 10.1016/j.compositesb.2012.09.066.
  • Di Landro, L.; Montalto, A.; Bettini, P.; Guerra, S.; Montagnoli, F.; Rigamonti, M. Detection of Voids in Carbon/Epoxy Laminates and Their Influence on Mechanical Properties. Polym. Polym. Compos. 2017, 25, 371–380. DOI: 10.1177/096739111702500506.
  • Tagliaferri, V.; Caprino, G.; Diterlizzi, A. Effect of Drilling Parameters on the Finish and Mechanical Properties of GFRP Composites. Int. J. Mach. Tools. Manuf. 1990, 30, 77–84. DOI: 10.1016/0890-6955(90)90043-i.
  • Ramulu, M. Machining and Surface Integrity of Fibre-Reinforced Plastic Composites. Sadhana. 1997, 22, 449–472. DOI: 10.1007/bf02744483.
  • Avellone, E. A.; Baumeister, T.; Saunders, H. Marks Standard Handbook for Mechanical Engineers; McGraw-Hill: New York, USA, 2008; pp 115. DOI: 10.1115/1.2929486.
  • Advani, S.; Sozer, E.; Mishnaevsky, L. Process Modeling in Composites Manufacturing; CRC Press: Boca Raton, USA, 2002. DOI: 10.1201/9780203910061.
  • Chen, D.; Arakawa, K.; Xu, C. Reduction of Void Content of Vacuum-Assisted Resin Transfer Molded Composites by Infusion Pressure Control. Polym. Compos. 2015, 36, 1629–1637. DOI: 10.1002/pc.23071.
  • Mallick, P. K. Fiber-reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, USA, 2007. DOI: 10.1201/9781420005981.
  • Castaneda, N.; Wisner, B.; Cuadra, J.; Amini, S.; Kontsos, A. Investigation of the Z-Binder Role in Progressive Damage of 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 76–89. DOI: 10.1016/j.compositesa.2016.11.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.