1,025
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Tribological solutions for engine piston ring surfaces: an overview on the materials and manufacturing

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 498-520 | Received 29 Jul 2019, Accepted 08 Nov 2019, Published online: 26 Nov 2019

References

  • Tung, S. C.; McMillan, M. L. Automotive Tribology Overview of Current Advances and Challenges for the Future. Tribol. Int. 2004, 37, 517–536. DOI: 10.1016/j.triboint.2004.01.013.
  • Holmberg, K.; Andersson, P.; Nylund, N. O.; Mäkelä, K.; Erdemir, A. Global Energy Consumption Due to Friction in Trucks and Buses. Tribol. Int. 2014, 78, 94–114.
  • Abdulqadir, L. B.; Mohd Nor, N. F.; Lewis, R.; Slatter, T. et al. Contemporary Challenges of Soot Build-up in IC Engine and Their Tribological Implications. Tribol. - Mater. Surf. Interfaces. [Internet]. 2018, 12, 115–129. DOI: 10.1080/17515831.2018.1464256
  • Comfort, A. An Introduction to Heavy-Duty Diesel Engine Frictional Losses and Lubricant Properties Affecting Fuel Economy - Part I. SAE Tech. Pap. 2003-01-3225 [Internet]. 2003. http://digitallibrary.sae.org/content/2003-01-3225%5Cnhttp://papers.sae.org/2003-01-3225/ (accessed Dec 16 2018)
  • Mishra, P. C. A Review of Piston Compression Ring Tribology. Tribol. Ind. 2014, 36, 269–280.
  • Tian, T. Modeling the Performance of the Piston Ring-pack. Ph.D. thesis of Massachusetts Institute of Technology, 1997; pp 194.
  • Morris, N.; Rahmani, R.; Rahnejat, H.; King, P. D.; Fitzsimons, B. The Influence of Piston Ring Geometry and Topography on Friction. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 141–153. DOI: 10.1177/1350650112463534.
  • Andersson, P.; Tamminen, J.; Sandstrom, C.-E. Piston Ring Tribology - A Literature Survey, VTT Technical Research Centre of Finland, 2002; pp 105.
  • Salazar, F. Internal Combustion Engines, Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, 1998; pp 87.
  • Shuster, M.; Mahler, F.; Crysler, D. Metallurgical and Metrological Examinations of the Cylinder Liner-piston Ring Surfaces after Heavy Duty Diesel Engine Testing©. Tribol. Trans. 1999, 42, 116–125. DOI: 10.1080/10402009908982198.
  • Dearnley, P. A. Meeting Tribological Challenges with Surface Engineered Materials. Tribol. - Mater. Surf. Interfaces. 2007, 1, 18–27. DOI: 10.1179/175158407X181516.
  • Smith, E. H. Optimising the Design of a Piston-ring Pack Using DoE Methods. Tribol. Int. [Internet]. 2011, 44, 29–41. DOI: 10.1016/j.triboint.2010.09.002
  • Wu, B.; Zhang, Z. N.; Wang, P. Effect of Design Parameters on the Reduction of Top Piston Ring Friction. Appl. Mech. Mater. [Internet]. 2012, 246–247, 1268–1272. DOI: 10.4028/www.scientific.net/AMM.246-247.1268
  • Söderfjäll, M.; Herbst, H. M.; Larsson, R.; Almqvist, A. Influence on Friction from Piston Ring Design, Cylinder Liner Roughness and Lubricant Properties. Tribol. Int. [Internet]. 2017, 116, 272–284. DOI: 10.1016/j.triboint.2017.07.015
  • Zhang, Z.; Liu, J.; Tang, Y.; Meng, X. Optimizing the Shape of Top Piston Ring Face Using Inverse Method. Ind. Lubr. Tribol. 2016, 68, 9–15. DOI: 10.1108/ILT-06-2015-0090.
  • Taylor, C. M. Engine Tribology. In Tribology Series; Taylor, C. M., Ed.; Elsevier B.V., 1993. pp. 1–300.
  • Sonthalia, A.; Kumar, C. R. The Effect of Compression Ring Profile on the Friction Force in an Internal Combustion Engine Tribology in Industry. Tribol. Ind. 2013, 35, 74–83.
  • Tian, T. Dynamic Behaviours of Piston Rings and Their Practical Impact. Part 1: Ring Flutter and Ring Collapse and Their Effects on Gas Flow and Oil Transport. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 209–228. DOI: 10.1243/135065002760199961.
  • Taylor, R. I. Lubrication, Tribology & Motorsport. Proceedings of the 2002 SAE Motor Engineering Conference Exhibition, Indianapolis (Indiana), USA, 2002.
  • Taylor, R. I.; Coy, R. C. Improved Fuel Efficiency by Lubricant Design: A Review. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2000, 214, 1–15. DOI: 10.1177/135065010021400101.
  • Smith, O.; Priest, M.; Taylor, R. I.; Price, R.; Cantlay, A.; Coy, R. C. Simulated Fuel Dilution and Friction-modifier Effects on Piston Ring Friction. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2006, 220, 181–189. DOI: 10.1243/13506501JET162.
  • Mishra, P. C. Tribodynamic Modeling of Piston Compression Ring and Cylinder Liner Conjunction in High-pressure Zone of Engine Cycle. Int. J. Adv. Manuf. Technol. 2013, 66, 1075–1085. DOI: 10.1007/s00170-012-4390-y.
  • Gupta, M.; Singhal, S.; Biswas, S. Analytical Investigation on the Effect of Multigrade Oil in Piston Ring Lubrication. Tribol. Trans. 1994, 37, 719–726. DOI: 10.1080/10402009408983351.
  • Morina, A.; Lee, P. M.; Priest, M.; Neville, A. Challenges of Simulating ‘fired Engine’ Ring-liner Oil additive/surface Interactions in Ring-liner Bench Tribometer. Tribol. - Mater. Surf. Interfaces. 2011, 5, 25–33. DOI: 10.1179/1751584X11Y.0000000003.
  • Woydt, M.; Kelling, N. Testing the Tribological Properties of Lubricants and Materials for the System “Piston ring/cylinder liner” outside of Engines. Ind. Lubr. Tribol. 2003, 55, 213–222. DOI: 10.1108/00368790310488878.
  • Zavos, A.; Nikolakopoulos, P. Thermo-mixed Lubrication Analysis of Coated Compression Rings with Worn Cylinder Profiles. Ind. Lubr. Tribol. 2017, 69, 15–29. DOI: 10.1108/ILT-11-2015-0169.
  • Delprete, C.; Razavykia, A. Piston Ring – Liner Lubrication and Tribological Performance Evaluation : A Review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 1–17.
  • Fatjo, G. G.; Smith, E. H. Piston-ring Film Thickness: Theory and Experiment Compared. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 1–18.
  • Tamura, K.; Kasai, M. Impact of Boundary Lubrication Performance of Engine Oils on Friction at Piston Ring-Cylinder Liner Interface Yukinobu Nakamura and Tomoyuki Enomoto, SAE International Journal of Fuels and Lubricants, 2014; pp 875–881.
  • Bulsara, M. A.; Bhatt, D. V.; Mistry, K. N. Measurement of Oil Film Thickness between Piston Ring and Liner Using Strain Gauge. Ind. Lubr. Tribol. 2013, 65, 297–304. DOI: 10.1108/ILT-02-2011-0013.
  • Hamatake, T.; Wakuri, Y.; Soejima, M.; Kitahara,  T. Some Studies on the Tribology of Diesel Engines. 23rd CIMAC world Congr. Combust. engine Technol. Sh. propulsion, power Gener. Hamburg, Germany; 2001. vol. 4, p. 1426–1440.
  • Gulwadi, S. D. Analysis of Tribological Performance of a Piston Ring Pack. Tribol. Trans. 2000, 43, 151–162. DOI: 10.1080/10402000008982325.
  • Gee, A. W. J. D. Friction and Wear as Related to the Composition, Structure, and Properties of Metals. Int. Met. Rev. 1979, 24, 57–67. DOI: 10.1179/095066079790136354.
  • Ligier, J.; Ragot, P. Mixed Lubrication and Roughness Surface Effects Application to Piston Rings. CI SI Power Cylind. Syst. 2007, 116, 756–765.
  • Isaksson, P.; Nilsson, D.; Larsson, R.; Almqvist, A. The Influence of Surface Roughness on Friction in a Flexible Hybrid Bearing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225, 975–985.
  • Ba, L.; He, Z.; Guo, L.; Chiang, Y.; Zhang, G.; Lu, X. Piston Ring-cylinder Liner Tribology Investigation in Mixed Lubrication Regime: Part I-correlation with Bench Experiment. Ind. Lubr. Tribol. 2015, 67, 520–530. DOI: 10.1108/ILT-07-2013-0078.
  • Cheng, J.; Meng, X.; Xie, Y.; Li, W. On the Running-In Behavior of Rough Surface of Piston Rings in Mixed Lubrication Regime. Ind. Lubr. Tribol. 2015, 67, 468–485. DOI: 10.1108/ILT-01-2015-0003.
  • Sahlin, F.; Larsson, R.; Almqvist, A.; Lugt, P. M.; Marklund, P. A Mixed Lubrication Model Incorporating Measured Surface Topography. Part 1 : Theory of Flow Factors. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 224, 335–351.
  • Michail, S. K.; Barber, G. C. The Effects of Roughness on Piston Ring Lubrication Part I: Model Development. Tribol. Trans. 1995, 38, 19–26. DOI: 10.1080/10402009508983375.
  • Michail, S. K.; Barber, G. C. The Effects of Roughness on Piston Ring Lubrication— Part II: The Relationship between Cylinder Wall Surface Topography and Oil Film Thickness. Tribol. Trans. 1995, 38, 173–177. DOI: 10.1080/10402009508983394.
  • Durga, V.; Rao, N.; Boyer, B. A.; Cikanek, H. A.; Kabat, D. M. Influence of Surface Characteristics and Oil Viscosity on Friction Behaviour of Rubbing Surfaces in Reciprocating Engines. Fall Tech. Conf. ASME-ICE. 1998, 31, 23–35.
  • Galligan, J.; Torrance, A. A.; Liraut, G. A Scuffing Test for Piston Ringrbore Combinations Part I. Stearic Acid Lubrication. Wear. 1999, 236, 199–209.
  • Galligan, J.; Torrance, A. A.; Liraut, G. A Scuffing Test for Piston Ringrbore Combinations: Pt. II. Formulated Motor Lubrication. Wear. 1999, 236, 210–220. DOI: 10.1016/S0043-1648(99)00277-X.
  • Pandazaras, C. N.; Petropoulos, G. P. Characterization and Modelling of Piston Ring-cylinder Tribosystem Microtopography in Lubricated Contact. Ind. Lubr. Tribol. 2000, 52, 257–267. DOI: 10.1108/00368790010352664.
  • Wei, H. J. Study on the Tribology of the Cylinder and Piston Ring of the Vehicle Diesel with Surface Roughness and Lubrication Oil. Adv. Mater. Res. [Internet]. 2011, 268–270, 322–325. DOI: 10.4028/www.scientific.net/AMR.268-270.322
  • He, Z.; Zhang, J.; Ma, W.; Xie, W.; Zhang, G.; Lu, X. A Concurrent Reynolds BC Algorithm for Piston Ring Cavitation Lubrication Problems with Surface Roughness. Tribol. Trans. 2014, 57, 353–365. DOI: 10.1080/10402004.2013.871376.
  • Wolff, A. Influence of Sliding Surface Roughness and Oil Temperature on Piston Ring Pack Operation of an Automotive IC Engine. IOP Conf. Ser. Mater. Sci. Eng, Cracow, Poland. 2016. DOI: 10.1088/1757-899X/148/1/012090
  • Checo, H. M.; Jaramillo, A.; Ausas, R. F.; Jai, M.; Buscaglia, G. C. Down to the Roughness Scale Assessment of piston-ring/liner Contacts. IOP Conference Series: Materials Science and Engineering, 2017. DOI: 10.1088/1757-899X/174/1/012035
  • Mezghani, S.; Demirci, I.; Zahouani, H.; El Mansori, M. The Effect of Groove Texture Patterns on Piston-ring Pack Friction. Precis. Eng. [Internet]. 2012, 36, 210–217. DOI: 10.1016/j.precisioneng.2011.09.008
  • Grabon, W.; Pawlus, P.; Wos, S.; Koszela, W.; Wieczorowski, M. Effects of Honed Cylinder Liner Surface Texture on Tribological Properties of Piston Ring-liner Assembly in Short Time Tests. Tribol. Int. [Internet]. 2017, 113, 137–148. DOI: 10.1016/j.triboint.2016.11.025
  • Gachot, C.; Rosenkranz, A.; Hsu, S. M.; Costa, H. L. A Critical Assessment of Surface Texturing for Friction and Wear Improvement. Wear. [Internet]. 2017, 372–373, 21–41. DOI: 10.1016/j.wear.2016.11.020
  • Priest, M.; Taylor, C. M. Automobile Engine Tribology—Approaching the Surface. Wear. [Internet]. 2000, 241, 193–203. DOI: 10.1016/S0043-1648(00)00375-6
  • Lacey, P. I.; Stockwell, R. T. Development of a Methodology to Predict Cylinder Liner Scuffing in the 6v92ta Engine Lubricant Test©. Tribol. Trans. 1999, 42, 192–201. DOI: 10.1080/10402009908982208.
  • Dellis, P. S. Piston-ring Performance: Limitations from Cavitation and Friction. Int. J. Struct. Integr. 2019, 10, 304–324. DOI: 10.1108/IJSI-09-2018-0053.
  • Thirouard, B. Characterization and Modeling of the Fundamental Aspects of Oil Transport in the Piston Ring Pack of Internal Combustion Engines, Ph.D. Thesis, Massachusetts Institute of Technology, 2001.
  • Shuster, M.; Mahler, F.; Macy, D.; Frame, R.; Deis, M. Piston Ring Microwelding Phenomenon and Methods of Prevention. SAE Tech. Pap. Ser. 2010, 1, 10.
  • Zhang, W.; Becker, E.; Wang, Y.; Zou, Q.; Zhou, B.; Barber, G. C. Investigation of Scuffing Resistance of Piston Rings Run against Piston Ring Grooves. Tribol. Trans. 2008, 51, 621–626. DOI: 10.1080/10402000802044316.
  • Grünling, H. W.; Schneider, K.; Singheiser, L. Mechanical Properties of Coated Systems. Mater. Sci. Eng. 1987, 88, 177–189. DOI: 10.1016/0025-5416(87)90083-8.
  • Mehran, Q. M.; Fazal, M. A.; Bushroa, A. R.; Rubaiee, S. A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components. Crit. Rev. Solid State Mater. Sci. [Internet]. 2018, 43, 158–175. DOI: 10.1080/10408436.2017.1320648
  • Guo, Y.; Lu, X.; Li, W.; He, T. Interfacial Stress and Failure Analysis for Piston Ring Coatings under Dry Running Condition. Tribol. Trans. 2013, 56, 1027–1034. DOI: 10.1080/10402004.2013.798879.
  • Mishra, P. C.; Bhattacharya, S.; Pandey, P. Finite Element Analysis for Coating Strength of A Piston Compression Ring in Contact with Cylinder Liner: A Tribodynamic Analysis. Tribol. Ind. 2015, 37, 42–54.
  • Posmyk, A.; Bakowski, H. Wear Mechanism of Cast Iron Piston Ring/Aluminum Matrix Composite Cylinder Liner. Tribol. Trans. 2013, 56, 806–815. DOI: 10.1080/10402004.2013.798878.
  • Kaźmierczak, A. Study and the Implementation of the New Technology of Piston Rings Production. Ind. Lubr. Tribol. 2006, 58, 140–144. DOI: 10.1108/00368790610661971.
  • Gopi, E.; Saleem, M.; Chandan, S.; Nema, A. Thermal and Static Analysis of Engine Piston Rings. Int. J. Ambient Energy. [Internet]. 2019, 1–8. DOI: 10.1080/01430750.2019.1636875
  • Baranowska, J. Surface Quality of Grey Cast Irons in the Context of Nitriding and Oxygen-sulphur Nitriding. Surf. Coatings Technol. [Internet]. 1998, 100–101, 271–275. DOI: 10.1016/S0257-8972(97)00631-2
  • Aizawa, T.; Kuwahara, H. Plasma Nitriding as an Environmentally Benign Surface Structuring Process. Mater. Trans. [Internet]. 2003, 44, 1303–1310. DOI: 10.2320/matertrans.44.1303
  • Michalski, J.; Wach, P.; Tacikowski, J.; Betiuk, M.; Burdynski, K.; Kowalski, S.; Nakonieczny, A. Contemporary Industrial Application of Nitriding and Its Modifications. Mater. Manuf. Process. 2009, 24, 855–858. DOI: 10.1080/10426910902844203.
  • Röhrle, M. D. Pistons for Internal Combustion Engines: Fundamentals of Piston Technology; Landsberg/Lech Verl. Moderne Industrie: Germany, 1995.
  • Affenzeller, J.; Gläser, H. Lagerung Und Schmierung Von Verbrennungsmotoren; Springer-Verlag: Vienna, Austria, 2013; Vol. 8.
  • Kalpeshkumar, P. A Review on Surface Treatment on Piston Ring and Cylinder Linear. Int. J. Eng. Dev. Res. 2014, 2, 1323–1326.
  • Lima, L. G. D. B. S.; Nunes, L. C. S.; Souza, R. M.; Fukumasu, N. K.; Ferrarese, A. Numerical Analysis of the Influence of Film Thickness and Properties on the Stress State of Thin Film-coated Piston Rings under Contact Loads. Surf. Coatings Technol. [Internet]. 2013, 215, 327–333. DOI: 10.1016/j.surfcoat.2012.04.102
  • Lyubimov, V. V.; Voevodin, A. A.; Yerokhin, A. L.; Timofeev, Y. S.; Arkhipov, I. K. Development and Testing of Multilayer Physically Vapour Deposited Coatings for Piston Rings. Surf. Coatings Technol. 1992, 52, 145–151. DOI: 10.1016/0257-8972(92)90040-H.
  • Babu, M. V.; Kumar, R. K.; Prabhakar, O.; Gowri Shankar, N. Simultaneous Optimization of Flame Spraying Process Parameters for High Quality Molybdenum Coatings Using Taguchi Methods. Surf. Coat. Technol. 1996, 79, 276–288. DOI: 10.1016/0257-8972(95)02453-0.
  • Friedrich, C.; Berg, G.; Broszeit, E.; Rick, F.; Holland, J. PVD CrxN Coatings for Tribological Application on Piston Rings. Surf. Coatings Technol. 1997, 97, 661–668. DOI: 10.1016/S0257-8972(97)00335-6.
  • Broszeit, E.; Friedrich, C.; Berg, G. Deposition, Properties and Applications of PVD Cr N Coatings. Surf. Coatings Technol. 1999, 115, 9–16. DOI: 10.1016/S0257-8972(99)00021-3.
  • Zhuo, S.; Peijun, Z.; Leheng, Z.; Xinfu, X.; Aimin, H.; Wenquan, Z. Multi-layer Compound Coating on Cast Iron Piston Ring by Multi-arc and Magnetron Sputtering Ion Compound Plating Technique. Surf. Coatings Technol. 2000, 131, 422–427. DOI: 10.1016/S0257-8972(00)00781-7.
  • Tung, S. C.; Gao, H. Tribological Characteristics and Surface Interaction between Piston Ring Coatings and a Blend of Energy-conserving Oils and Ethanol Fuels. Wear. 2003, 255, 1276–1285. DOI: 10.1016/S0043-1648(03)00240-0.
  • Karamiş, M. B.; Yildizli, K.; Çakirer, H. An Evaluation of Surface Properties and Frictional Forces Generated from Al-Mo-Ni Coating on Piston Ring. Appl. Surf. Sci. 2004, 230, 191–200. DOI: 10.1016/j.apsusc.2004.02.053.
  • Karamiş, M. B.; Yildizli, K.; Çakirer, H. Wear Behaviour of Al-Mo-Ni Composite Coating at Elevated Temperature. Wear. 2005, 258, 744–751. DOI: 10.1016/j.wear.2004.09.072.
  • Houdková, Š.; Kašparová, M.; Zahálka, F. The Friction Properties of the HVOF Sprayed Coatings Suitable for Combustion Engines, Measured in Compliance with ASTM G-99. WIT Trans. Eng. Sci. 2010, 66, 129–139.
  • Ali, M.; Hamzah, E.; Qazi, I. A.; Toff, M. R. M. Effect of Cathodic Arc PVD Parameters on Roughness of TiN Coating on Steel Substrate. Curr. Appl. Phys. [Internet]. 2010, 10, 471–474. DOI: 10.1016/j.cap.2009.07.007
  • Ferrarese, A.; Martínez, D.; Keuerleber, M. Steel Ring Pack for High Speed Large Bore Applications, Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Torino, Piemonte, Italy, 2012; pp 1–7.
  • Lorenzo Martin, C.; Ajayi, O.; Torrel, S.; Demas, N.; Erdemir, A.; Wei, R. Effect of Coating Thickness on Tribological Performance of CrN in Dry Sliding Contact, ASME/STLE 2012 International Joint Tribology ConferenceDenver, Colorado, USA, 2012; pp 10–12.
  • Lorenzo-Martin, C.; Ajayi, O.; Erdemir, A.; Fenske, G. R.; Wei, R. Effect of Microstructure and Thickness on the Friction and Wear Behavior of CrN Coatings. Wear. [Internet]. 2013, 302, 963–971. DOI: 10.1016/j.wear.2013.02.005
  • Araujo, J. A.; Araujo, G. M.; Souza, R. M.; Tschiptschin, A. P. Effect of Periodicity on Hardness and Scratch Resistance of CrN/NbN Nanoscale Multilayer Coating Deposited by Cathodic Arc Technique. Wear. [Internet]. 2015, 330–331, 469–477. DOI: 10.1016/j.wear.2015.01.051
  • Lin, J.; Wei, R.; Bitsis, D. C.; Lee, P. M. Development and Evaluation of Low Friction TiSiCN Nanocomposite Coatings for Piston Ring Applications. Surf. Coatings Technol. [Internet]. 2016, 298, 121–131. DOI: 10.1016/j.surfcoat.2016.04.061
  • Singh, S. K.; Chattopadhyaya, S.; Pramanik, A.; Kumar, S. Wear Behavior of Chromium Nitride Coating in Dry Condition at Lower Sliding Velocity and Load. Int. J. Adv. Manuf. Technol. 2017, 1–11, 1665–1675.
  • Biberger, J.; Füßer, H. J. Development of a Test Method for a Realistic, Single Parameter-dependent Analysis of Piston Ring versus Cylinder Liner Contacts with a Rotational Tribometer. Tribol. Int. [Internet]. 2017, 113, 111–124. DOI: 10.1016/j.triboint.2016.10.043
  • Zhang, C.; Liu, L.; Xu, H.; Xiao, J.; Zhang, G.; Liao, H. Role of Mo on Tribological Properties of Atmospheric Plasma-sprayed Mo-NiCrBSi Composite Coatings under Dry and Oil-lubricated Conditions. J. Alloys Compd. [Internet]. 2017, 727, 841–850. DOI: 10.1016/j.jallcom.2017.08.195
  • Liu, L.; Xu, H.; Xiao, J.; Wei, X.; Zhang, G.; Zhang, C. Effect of Heat Treatment on Structure and Property Evolutions of Atmospheric Plasma Sprayed NiCrBSi Coatings. Surf. Coatings Technol. [Internet]. 2017, 325, 548–554. DOI: 10.1016/j.surfcoat.2017.07.011
  • International, A. Introduction to Thermal Spray Processing. Handb. Therm. Spray Technol. 2004, 54–76.
  • Lille, H.; Kõo, J.; Kulu, P.; Pihl, T. Residual Stresses in Different Thermal Spray Coatings, Proceedings of the Estonian Academy of Sciences, 2002; pp 162–173.
  • Araujo, P.; Chicot, D.; Staia, M.; Lesage, J. Residual Stresses and Adhesion of Thermal Spray Coatings. Surface Engineering, 2005, 21, 35–41.
  • Vuoristo, P. Thermal Spray Coating Processes. [Internet]. Compr. Mater. Process. Elsevier. 2014. DOI: 10.1016/B978-0-08-096532-1.00407-6
  • Verdian, M. M. Finishing and Post-Treatment of Thermal Spray Coatings. Compr. Mater. Finish. [Internet]. Elsevier Ltd. 2017, 191–206. DOI: 10.1016/B978-0-12-803581-8.09200-6
  • Davis, D.; Anandhan, V.; Singh, S. Oxidation-induced Crack Healing and Erosion Life Assessment of Ni–Mo–Al–Cr 7 C 3 –Al 2 O 3 Composite Coating. Int. J. Appl. Ceram. Technol. 2019, 16, 1012–1021. DOI: 10.1111/ijac.2019.16.issue-3.
  • Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H. W.; Mahlfeld, G.; Schläfer, T. Development of Novel Fe-based Coating Systems for Internal Combustion Engines. Proc. Int. Therm. Spray Conf. 2017, 1, 228–234.
  • Böttcher, R.; Winkler, H. J.; Dienwiebel, M.; Scherge, M. Tribology of Wire Arc Spray Coatings under the Influence of Regenerative Fuels. Lubricants. 2018, 6, 1–9. DOI: 10.3390/lubricants6030060.
  • Bouzana, A.; Guermat, A.; Belarifi, F. Experimental Results of a Hydrodynamic Friction Behaviour of a Linear Contact at Low Sliding Velocity. Mater. Sci. Eng. 2018, 295.
  • Liu, Y.; Kim, D.; Westerfield, Z.; Meng, Z.; Tian, T. A Comprehensive Study of the Effects of Honing Patterns on Twin-land Oil Control Rings Friction Using Both A Numerical Model and A Floating Liner Engine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 229–255. DOI: 10.1177/1350650118774395.
  • Wopelka, T.; Cihak-bayr, U.; Lenauer, C.; Ditrói, F.; Takács, S.; Sequard-Base, J.; Jech, M. Wear of Different Material Pairings for the Cylinder Liner – Piston Ring Contact. Ind. Lubr. Tribol. 2018, 70, 687–699. DOI: 10.1108/ILT-07-2017-0218.
  • Lifshitz, Y. Diamond-like Carbon — Present Status. Diam. Relat. Mater. [Internet]. 1999, 8, 1659–1676. DOI: 10.1016/S0925-9635(99)00087-4
  • Robertson, J. Diamond-like Amorphous Carbon. Mater. Sci. Eng. R Reports. 2002, 37, 129–281. DOI: 10.1016/S0927-796X(02)00005-0.
  • Bewilogua, K.; Hofmann, D. History of Diamond-like Carbon Films - from First Experiments to Worldwide Applications. Surf. Coatings Technol. [Internet]. 2014, 242, 214–225. DOI: 10.1016/j.surfcoat.2014.01.031
  • Tietema, R. Large-Scale Industrial Coating Applications and Systems. Compr. Mater. Process. 2014, 4, 519–561. Elsevier.
  • Vetter, J. 60years of DLC Coatings: Historical Highlights and Technical Review of Cathodic Arc Processes to Synthesize Various DLC Types, and Their Evolution for Industrial Applications. Surf. Coatings Technol. [Internet]. 2014, 257, 213–240. DOI: 10.1016/j.surfcoat.2014.08.017
  • Gangopadhyay, A.; Zdrodowski, R. J.; Simko, S. J. Interactions of Diamond-Like Carbon Coatings with Fully Formulated Engine Oils. Tribol. Trans. 2014, 57, 503–514. DOI: 10.1080/10402004.2013.870268.
  • Vinoth, I. S.; Detwal, S.; Umasankar, V.; Sarma, A. Tribological Studies of Automotive Piston Ring by Diamond-like Carbon Coating. Tribol. - Mater. Surf. Interfaces. [Internet]. 2019, 13, 31–38. DOI: 10.1080/17515831.2019.1569852
  • Acunaş Karagöz, Z. B.; Demirtaş, S.; Kaleli, H.; Yüksek, L.; Çıtak, E. Review of Tribological Behavior of Graphene Coatings on Piston Rings in Engines. Ind. Lubr. Tribol. 2019. DOI:10.1108/ILT-06-2018-0233.
  • Tahir, N. A. M.; Abdollah, M. F. B.; Tamaldin, N.; Amiruddin, H.; Mohamad Zin, M. R. B. A Brief Review on the Wear Mechanisms and Interfaces of Carbon Based Materials. Compos. Interfaces. [Internet]. 2018, 25, 491–513. DOI: 10.1080/09276440.2018.1380472
  • Martinella, R. Selection and Application of Wear-resistant Materials to Increase Service Life of Components. Ceram. Int. 1993, 19, 375–389. DOI: 10.1016/0272-8842(93)90027-O.
  • Donnet, C.; Erdemir, A. Tribology of Diamond-Like Carbon Films. [Internet]. Tribol. Diamond-Like Carbon Film. Fundam. Appl. 2008. DOI: 10.1007/978-0-387-49891-1
  • Dorner-Reisel, A.; Lieberwirth, R.; Svoboda, S.; Günther, K.; Röder, C.; Himcinschi, C.; Irmer, G.; Weißmantel, S. Wear Behaviour of Hydrogen Free Diamond-like Carbon Thin Films in Diesel Fuel at Different Temperatures. Diam. Relat. Mater. 2014, 44, 78–87. DOI: 10.1016/j.diamond.2014.01.013.
  • Lubwama, M.; Corcoran, B.; Sayers, K. DLC Films Deposited on Rubber Substrates: A Review. Surf. Eng. 2015, 31, 1–10. DOI: 10.1179/1743294414Y.0000000379.
  • Tung, S. C.; Gao, H. Tribological Investigation of Piston Ring Coatings Operating in an Alternative Fuel and Engine Oil Blend. Tribol. Trans. 2002, 45, 381–389. DOI: 10.1080/10402000208982563.
  • Beake, B. D.; Liskiewicz, T. W.; Vishnyakov, V. M.; Davies, M. I. Development of DLC Coating Architectures for Demanding Functional Surface Applications through Nano- and Micro-mechanical Testing. Surf. Coatings Technol. [Internet]. 2015, 284, 334–343. DOI: 10.1016/j.surfcoat.2015.05.050
  • Smart, R. F.; Moore, J. C. Materials Selection for Wear Resistance. Wear. [Internet]. 1979, 56, 55–67. DOI: 10.1016/0043-1648(79)90006-1
  • Kano, M. Diamond-Like Carbon Coating Applied to Automotive Engine Components. Tribol. Online. [Internet]. 2014, 9, 135–142. DOI: 10.2474/trol.9.135
  • Tas, M. O.; Banerji, A.; Lou, M.; Lukitsch, M. J.; Alpas, A. T. Roles of Mirror-like Surface Finish and DLC Coated Piston Rings on Increasing Scuffing Resistance of Cast Iron Cylinder Liners. Wear. [Internet]. 2017, 376–377, 1558–1569. DOI: 10.1016/j.wear.2017.01.110
  • Wan, S.; Li, D.; Zhang, G.; Tieu, A. K.; Zhang, B. Comparison of the Scuffing Behaviour and Wear Resistance of Candidate Engineered Coatings for Automotive Piston Rings. Tribol. Int. [Internet]. 2017, 106, 10–22. DOI: 10.1016/j.triboint.2016.10.026
  • Okubo, H.; Watanabe, S.; Tadokoro, C.; Sasaki, S. Ultralow Friction of a Tetrahedral Amorphous Carbon Film Lubricated with an Environmentally Friendly Ester-Based Oil. Tribol. Online. [Internet]. 2016, 11, 102–113. DOI: 10.2474/trol.11.102
  • Higuchi, T.; Mabuchi, Y.; Ichihara, H.; Murata, T.; Moronuki, M. Development of Hydrogen-Free Diamond-Like Carbon Coating for Piston Rings. Tribol. Online. [Internet]. 2017, 12, 117–122. DOI: 10.2474/trol.12.117
  • Mabuchi, Y.; Higuchi, T.; Inagaki, Y.; Kousaka, H.; Umehara, N. Wear Analysis of Hydrogen-free Diamond-like Carbon Coatings under a Lubricated Condition. Wear. [Internet]. 2013, 298–299, 48–56. DOI: 10.1016/j.wear.2012.11.046
  • Wu, Y.; Zhao, J.; Li, Y. Thickness of Transition Layer Effect on Bonding Strength in DLC Film, Asia-Pacific Engineering and Technology ConferenceKuala Lumpur, Malasia, 2017; pp 486–491.
  • Gåhlin, R.; Larsson, M.; Hedenqvist, P. ME-C:H Coatings in Motor Vehicles. Wear. 2001, 249, 302–309. DOI: 10.1016/S0043-1648(01)00565-8.
  • Guo, C. Q.; Pei, Z. L.; Fan, D.; Gong, J.; Sun, C. Microstructure and Tribomechanical Properties of (Cr, N)-DLC/DLC Multilayer Films Deposited by a Combination of Filtered and Direct Cathodic Vacuum Arcs. Diam. Relat. Mater. [Internet]. 2015, 60, 66–74. DOI: 10.1016/j.diamond.2015.10.019
  • Zhang, Y.; Zhai, Y.; Li, F.; Zhang, S.; Zhang, P.; Zhang, S. Effect of Microstructure and Mechanical Properties Difference between Sub-layers on the Performance of Alternate Hard and Soft Diamond-like Carbon Multilayer Films. Surf. Coatings Technol. [Internet]. 2013, 232, 575–581. DOI: 10.1016/j.surfcoat.2013.06.030
  • Kilman, L.; Jaoul, C.; Colas, M.; Tristant, P.; Dublanche-Tixier, C.; Laborde, E.; Meunier, F.; O., J. Friction and Wear Performance of Multilayered a-C:H:Al Coatings. Surf. Coatings Technol. [Internet]. 2015, 284, 159–165. DOI: 10.1016/j.surfcoat.2015.07.079
  • Zhang, W.; Tanaka, A.; Xu, B. S.; Koga, Y. Study on the Diamond-like Carbon Multilayer Films for Tribological Application. Diam. Relat. Mater. 2005, 14, 1361–1367. DOI: 10.1016/j.diamond.2005.02.010.
  • Mutyala, K. C.; Singh, H.; Evans, R. D.; Doll, G. L. Effect of Diamond-Like Carbon Coatings on Ball Bearing Performance in Normal, Oil-Starved, and Debris-Damaged Conditions. Tribol. Trans. [Internet]. 2016, 59, 1039–1047. DOI: 10.1080/10402004.2015.1131349
  • Kot, M.; Major, Ł.; Lackner, J. M.; Chronowska-Przywara, K.; Janusz, M.; Rakowski, W. Mechanical and Tribological Properties of Carbon-Based Graded Coatings. J. Nanomater. 2016, 2016, 1–14. DOI: 10.1155/2016/8306345.
  • Linsler, D.; Kümmel, D.; Nold, E.; Dienwiebel, M. Analysis of the Running-in of Thermal Spray Coatings by Time-dependent Stribeck Maps. Wear. [Internet]. 2017, 376–377, 1467–1474. DOI: 10.1016/j.wear.2017.02.026
  • Hovsepian, P. E.; Mandal, P.; Ehiasarian, A. P.; Sáfrán, G.; Tietema, R.; Doerwald, D. Friction and Wear Behaviour of Mo-W Doped Carbon-based Coating during Boundary Lubricated Sliding. Appl. Surf. Sci. [Internet]. 2016, 366, 260–274. DOI: 10.1016/j.apsusc.2016.01.007
  • Müller, I. C.; Sharp, J.; Rainforth, W. M.; Hovsepian, P.; Ehiasarian, A. Tribological Response and Characterization of Mo–W Doped DLC Coating. Wear. [Internet]. 2017, 376–377, 1622–1629. DOI: 10.1016/j.wear.2016.11.036
  • Hovsepian, P. E.; Lewis, D. B.; Müunz, W. D.; Rouzaud, A.; Juliet, P. Chromium Nitride/niobium Nitride Superlattice Coatings Deposited by Combined cathodic-arc/unbalanced Magnetron Technique. Surf. Coatings Technol. 1999, 116–119, 727–734. DOI: 10.1016/S0257-8972(99)00182-6.
  • W-D, M.; Lewis, D. B.; Hovsepian, P. E.; Schönjahn, C.; Ehiasarian, A.; Smith, I. J. Industrial Scale Manufactured Superlattice Hard PVD Coatings. Surf. Eng. [Internet]. 2001, 17, 15–27. DOI: 10.1179/026708401101517557
  • Ehiasarian, A. P.; Hovsepian, P. E.; Hultman, L.; Helmersson, U. Comparison of Microstructure and Mechanical Properties of Chromium Nitride-based Coatings Deposited by High Power Impulse Magnetron Sputtering and by the Combined Steered Cathodic arc/unbalanced Magnetron Technique. Thin Solid Films. 2004, 457, 270–277. DOI: 10.1016/j.tsf.2003.11.113.
  • Purandare, Y. P.; Ehiasarian, A. P.; Hovsepian, P. E. Deposition of a Nanoscale Multilayer CrN/nBn Physical Vapor Deposition Coatings by High Power Impulse Magnetron Sputtering. J. Vac. Sci. Technol. A Vac. Surf. Film. 2008, 26, 288–296. DOI: 10.1116/1.2839855.
  • Cameron, D. C.; Aimo, R.; Wang, Z. H.; Pischow, K. A. Structural Variations in CrN/NbN Superlattices. Surf. Coatings Technol. 2001, 142, 567–572. DOI: 10.1016/S0257-8972(01)01057-X.
  • Bemporad, E.; Pecchio, C.; De Rossi, S.; Carassiti, F. Characterisation and Wear Properties of Industrially Produced Nanoscaled CrN/NbN Multilayer Coating. Surf. Coatings Technol. 2004, 188–189, 319–330. DOI: 10.1016/j.surfcoat.2004.08.069.
  • Cansever, N. Properties of Niobium Nitride Coatings Deposited by Cathodic Arc Physical Vapor Deposition. Thin Solid Films. 2007, 515, 3670–3674. DOI: 10.1016/j.tsf.2006.10.133.
  • Venkateswara Babu, P.; Syed, I.; Beera, S. B. Influence of Positive Texturing on Friction and Wear Properties of Piston Ring-cylinder Liner Tribo Pair under Lubricated Conditions. Ind. Lubr. Tribol. 2019, 71, 515–524. DOI: 10.1108/ILT-07-2017-0203.
  • Vlădescu, S. C.; Ciniero, A.; Tufail, K.; Gangopadhyay, A.; Reddyhoff, T. Optimization of Pocket Geometry for Friction Reduction in Piston–Liner Contacts. Tribol. Trans. 2018, 61, 522–531. DOI: 10.1080/10402004.2017.1363930.
  • Senatore, A.; Aleksendric, D. Engine Piston Rings Improvement through Effective Materials, Advanced Manufacturing Methods and Novel Design Shape. Ind. Lubr. Tribol. 2014, 66, 298–305. DOI: 10.1108/ILT-01-2012-0010.
  • Koszela, W.; Pawlus, P.; Galda, L. The Effect of Oil Pockets Size and Distribution on Wear in Lubricated Sliding. Wear. 2007, 263, 1585–1592. DOI: 10.1016/j.wear.2007.01.108.
  • Ronen, A.; Etsion, I.; Kligerman, Y. Friction-reducing Surface-texturing in Reciprocating Automotive Components. Tribol. Trans. 2001, 44, 359–366. DOI: 10.1080/10402000108982468.
  • Wang, H.; Zhu, H.; Zhou, Y.; Yang, H. Experimental Study on the Friction Characteristics of Textured Steel Surface with Ring-Shaped Pits under Lubricated Sliding Conditions. Tribol. Trans. 2015, 58, 712–717. DOI: 10.1080/10402004.2015.1005265.
  • Wang, S.; Yan, F.; Chen, A. Tribological Effects of Laser Surface Texturing and Residual Stress. Ind. Lubr. Tribol. 2016, 70(1), 126–132.
  • Zhang, Y.; Zhang, X.; Wu, T.; Xie, Y. B. Effects of Surface Texturing on the Tribological Behavior of Piston Rings under Lubricated Conditions. Ind. Lubr. Tribol. 2016, 68, 158–169. DOI: 10.1108/ILT-05-2015-0063.
  • Wos, S.; Koszela, W.; Pawlus, P. Determination of Oil Demand for Textured Surfaces under Conformal Contact Conditions. Tribol. Int. [Internet]. 2016, 93, 602–613. DOI: 10.1016/j.triboint.2015.05.016
  • Li, X.; Olofsson, U. A Study on Friction and Wear Reduction Due to Porosity in Powder Metallurgic Gear Materials. Tribol. Int. [Internet]. 2017, 110, 86–95. DOI: 10.1016/j.triboint.2017.02.008
  • Schubert, A.; Neugebauer, R.; Sylla, D.; Avila, M.; Hackert, M Manufacturing of Surface Microstructures for Improved Tribological Efficiency of Powertrain Components and Forming Tools. CIRP J. Manuf. Sci. Technol. [Internet]. 2011, 4, 200–207. DOI: 10.1016/j.cirpj.2011.01.010
  • Braun, D.; Greiner, C.; Schneider, J.; Gumbsch, P. Efficiency of Laser Surface Texturing in the Reduction of Friction under Mixed Lubrication. Tribol. Int. [Internet]. 2014, 77, 142–147. DOI: 10.1016/j.triboint.2014.04.012
  • Abdul Rahman, H., . A.; Ghani, J.; Wan Mahmood, W. M. F.; Mohammad Rasani, M. R. Computational Fluid Dynamic Study on the Tribological Performance of Dimple-textured Surface Fabricated Using the Turning Process. Ind. Lubr. Tribol. 2019, 71, 594–602. DOI: 10.1108/ILT-05-2018-0211.
  • Grützmacher, P. G.; Rosenkranz, A.; Szurdak, A.; Grüber, M.; Gachot, C.; Hirt, G.; Mücklich, F. Multi-scale Surface Patterning – An Approach to Control Friction and Lubricant Migration in Lubricated Systems. Ind. Lubr. Tribol. 2019, 71, 1007–1016. DOI: 10.1108/ILT-07-2018-0273.
  • Burstein, L. Surfaces with Size Different Pores: Hydrodynamic Lubrication Quality. Ind. Lubr. Tribol. 2018, 70, 1234–1242. DOI: 10.1108/ILT-12-2017-0390.
  • Ji, J.; Fu, Y.; Bi, Q. The Influence of Partially Textured Slider with Orientation Ellipse Dimples on the Behavior of Hydrodynamic Lubrication. Ind. Lubr. Tribol. 2014, 66, 161–167. DOI: 10.1108/ILT-11-2011-0087.
  • Bruzzone, A. A. G.; Costa, H. L.; Lonardo, P. M.; Lucca, D. A. Advances in Engineered Surfaces for Functional Performance. CIRP Ann. Manuf. Technol. 2008, 57, 750–769. DOI: 10.1016/j.cirp.2008.09.003.
  • Martz, L. S. Preliminary Report of Developments in Interrupted Surface Finishes. Proc. Inst. Mech. Eng. 1949, 16, 1–9. DOI: 10.1243/PIME_PROC_1949_161_007_02.
  • Grabon, W.; Koszela, W.; Pawlus, P.; Ochwat, S. Improving Tribological Behaviour of Piston Ring-cylinder Liner Frictional Pair by Liner Surface Texturing. Tribol. Int. [Internet]. 2013, 61, 102–108. DOI: 10.1016/j.triboint.2012.11.027
  • Tomanik, E. Friction and Wear Bench Tests of Different Engine Liner Surface Finishes. Tribol. Int. 2008, 41, 1032–1038. DOI: 10.1016/j.triboint.2007.11.019.
  • Vlădescu, S. C.; Olver, A. V.; Pegg, I. G.; Reddyhoff, T. Combined Friction and Wear Reduction in a Reciprocating Contact through Laser Surface Texturing. Wear. 2016, 358–359, 51–61. DOI: 10.1016/j.wear.2016.03.035.
  • Vlədescu, S. C.; Medina, S.; Olver, A. V.; Pegg, I. G.; Reddyhoff, T. Lubricant Film Thickness and Friction Force Measurements in a Laser Surface Textured Reciprocating Line Contact Simulating the Piston Ring-liner Pairing. Tribol. Int. [Internet]. 2016, 98, 317–329. DOI: 10.1016/j.triboint.2016.02.026
  • Vlădescu, S. C.; Ciniero, A.; Tufail, K.; Gangopadhyay, A.; Reddyhoff, T. Looking into a Laser Textured Piston Ring-liner Contact. Tribol. Int. 2017, 115, 140–153. DOI: 10.1016/j.triboint.2017.04.051.
  • Hua, X.; Sun, J.; Zhang, P.; Ge, H.; Yonghong, F.; Jinghu, J.; Yin, B. Research on Discriminating Partition Laser Surface Micro-texturing Technology of Engine Cylinder. Tribol. Int. 2016, 98, 190–196. DOI: 10.1016/j.triboint.2016.02.010.
  • Vladescu, S. C.; Olver, A. V.; Pegg, I. G.; Reddyhoff, T. The Effects of Surface Texture in Reciprocating Contacts - an Experimental Study. Tribol. Int. [Internet]. 2015, 82, 28–42. DOI: 10.1016/j.triboint.2014.09.015
  • Profito, F. J.; Vlădescu, S. C.; Reddyhoff, T.; Dini, D. Transient Experimental and Modelling Studies of Laser-textured Micro-grooved Surfaces with a Focus on Piston-ring Cylinder Liner Contacts. Tribol. Int. 2017, 113, 125–136. DOI: 10.1016/j.triboint.2016.12.003.
  • Biboulet, N.; Lubrecht, A. A. Analytical Solution for Textured Piston Ring - Cylinder Liner Contacts (1D analysis). Tribol. Int. [Internet]. 2016, 96, 269–278. DOI: 10.1016/j.triboint.2015.12.042
  • Zavos, A.; Nikolakopoulos, P. Effects of Surface Irregularities on Piston Ring-cylinder Tribo Pair of a Two Stroke Motor Engine in Hydrodynamic Lubrication. Tribol. Ind. 2015, 37, 1–12.
  • Usman, A.; Park, C. W. Optimizing the Tribological Performance of Textured Piston Ring-liner Contact for Reduced Frictional Losses in SI Engine: Warm Operating Conditions. Tribol. Int. [Internet]. 2016, 99, 224–236. DOI: 10.1016/j.triboint.2016.03.030
  • Tomanik, E.; Profito, F. J.; Zachariadis, D. C. Modelling the Hydrodynamic Support of Cylinder Bore and Piston Rings with Laser Textured Surfaces. Tribol. Int. [Internet]. 2013, 59, 90–96. DOI: 10.1016/j.triboint.2012.01.016
  • Gu, C.; Meng, X.; Xie, Y.; Yang, Y. Effects of Surface Texturing on ring/liner Friction under Starved Lubrication. Tribol. Int. [Internet]. 2016, 94, 591–605. DOI: 10.1016/j.triboint.2015.10.024
  • Zavos, A. B.; Nikolakopoulos, P. G. Simulation of Piston Ring Tribology with Surface Texturing for Internal Combustion Engines. Lubr. Sci. 2015, 27, 151–176. DOI: 10.1002/ls.v27.3.
  • Ryk, G.; Etsion, I. Testing Piston Rings with Partial Laser Surface Texturing for Friction Reduction. Wear. 2006, 261, 792–796. DOI: 10.1016/j.wear.2006.01.031.
  • Ryk, G.; Kligerman, Y.; Etsion, I.; Shinkarenko, A. Experimental Investigation of Partial Laser Surface Texturing for Piston-ring Friction Reduction. Tribol. Trans. 2005, 48, 583–588. DOI: 10.1080/05698190500313544.
  • Etsion, I.; Sher, E. Improving Fuel Efficiency with Laser Surface Textured Piston Rings. Tribol. Int. 2009, 42, 542–547. DOI: 10.1016/j.triboint.2008.02.015.
  • Shen, C.; Khonsari, M. M. The Effect of Laser Machined Pockets on the Lubrication of Piston Ring Prototypes. Tribol. Int. [Internet]. 2016, 101, 273–283. DOI: 10.1016/j.triboint.2016.04.009
  • Zavedeev, E. V.; Zilova, O. S.; Barinov, A. D.; Shupegin, M. L.; Arutyunyan, N. R.; Jaeggi, B.; Neuenschwander, B.; Pimenov, S. M. Femtosecond Laser Microstructuring of Diamond-like Nanocomposite Films. Diam. Relat. Mater. 2017, 74, 45–52. DOI: 10.1016/j.diamond.2017.02.003.
  • Al-Azizi, A. A.; Eryilmaz, O.; Erdemir, A.; Kim, S. H. Nano-texture for a Wear-resistant and Near-frictionless Diamond-like Carbon. Carbon N. Y. 2014, 73, 403–412. DOI: 10.1016/j.carbon.2014.03.003.
  • Mishra, P.; Ramkumar, P. Effect of Additives on a Surface Textured Piston Ring–Cylinder Liner System. Tribol. - Mater. Surf. Interfaces. [Internet]. 2019, 13, 67–75. DOI: 10.1080/17515831.2019.1588554
  • Cai, A. H.; Xiong, X.; Liu, Y.; An, W. K.; Zhou, G. J.; Luo, Y.; Li, T. L.; Li, X. S. Consolidation of Cu Based Amorphous Powder by Hot Pressing Method. Powder Metall. 2011, 55, 22–28. DOI: 10.1179/1743290111Y.0000000015.
  • Girish, B. M.; Basawaraj, B. R.; Satish, B. M.; Somashekar, D. R. Electrical Resistivity and Mechanical Properties of Tungsten Carbide Reinforced Copper Alloy Composites. Int. J. Compos. Mater. 2012, 2, 37–43.
  • Vignesh Babu, R.; Verma, K. A.; Charan, M.; Kanagaraj, S. Tweaking the Diameter and Concentration of Carbon Nanotubes and Sintering Duration in Copper Based Composites for Heat Transfer Applications. Adv. Powder Technol. [Internet]. 2018, 29, 2356–2367. DOI: 10.1016/j.apt.2018.06.015
  • Zhang, J.; Zhang, S.; Wang, L.; Zhang, J.; Dai, H. Copper and Copper Alloy Powder Technology and Market Developments in China. Powder Metall. 2014, 57, 314–315. DOI: 10.1179/0032589914Z.000000000197.
  • Mosher, W. G. E.; Kipouros, G. J.; Caley, W. F.; Donaldson, I. W.; Bishop, D. P. On Hot Deformation of Aluminium–Silicon Powder Metallurgy Alloys. Powder Metall. 2011, 54, 366–375. DOI: 10.1179/003258910X12678035166773.
  • Konstanty, J. Production Parameters and Materials Selection of Powder Metallurgy Diamond Tools. Powder Metall. 2006, 49, 299–306. DOI: 10.1179/174329006X113508.
  • Konstanty, J. Sintered Diamond Tools: Trends, Challenges and Prospects. Powder Metall. 2013, 56, 184–188. DOI: 10.1179/1743290113Y.0000000058.
  • Saba, F.; Zhang, F.; Liu, S.; Liu, T. Reinforcement Size Dependence of Mechanical Properties and Strengthening Mechanisms in Diamond Reinforced Titanium Metal Matrix Composites. Compos. Part B Eng. [Internet]. 2019, 167, 7–19. DOI: 10.1016/j.compositesb.2018.12.014
  • Zhou, L.; Xiong, J.; Guo, Z.; Ye, J. Design and Preparation of Gradient graphite/cermets Self-lubricating Composites. J. Mater. Sci. Technol. [Internet]. 2018, 34, 1378–1386. DOI: 10.1016/j.jmst.2017.09.018
  • Garcia, J.; Ferreira, A. R.; Silva, F. S.; Carvalho, O.; Trindade, B. Production and Tribological Characterization of a Textured Diamond-reinforced Copper-beryllium Alloy. Tribol. Int. [Internet]. 2019, 140, 105843. DOI: 10.1016/j.triboint.2019.105843
  • Littmann, W.; Storck, H.; Wallaschek, J. Sliding Friction in the Presence of Ultrasonic Oscillations: Superposition of Longitudinal Oscillations. Arch. Appl. Mech. 2001, 71, 549–554. DOI: 10.1007/s004190100160.
  • Kumar, V. C.; Hutchings, I. M. Reduction of the Sliding Friction of Metals by the Application of Longitudinal or Transverse Ultrasonic Vibration. Tribol. Int. 2004, 37, 833–840. DOI: 10.1016/j.triboint.2004.05.003.
  • Gutowski, P.; Leus, M. Computational Model for Friction Force Estimation in Sliding Motion at Transverse Tangential Vibrations of Elastic Contact Support. Tribol. Int. 2015, 90, 455–462. DOI: 10.1016/j.triboint.2015.04.044.
  • Storck, H.; Littmann, W.; Wallaschek, J.; Mracek, M. The Effect of Friction Reduction in Presence of Ultrasonic Vibrations and Its Relevance to Travelling Wave Ultrasonic Motors. Ultrasonics. 2002, 40, 379–383. DOI: 10.1016/S0041-624X(02)00126-9.
  • Chowdhury, M. A.; Helali, M. The Effect of Amplitude of Vibration on the Coefficient of Friction for Different Materials. Tribol. Int. 2008, 41, 307–314. DOI: 10.1016/j.triboint.2007.08.005.
  • Wang, P.; Ni, H.; Wang, R.; Li, Z.; Wang, Y. Experimental Investigation of the Effect of In-plane Vibrations on Friction for Different Materials. Tribol. Int. [Internet]. 2016, 99, 237–247. DOI: 10.1016/j.triboint.2016.03.021
  • Yoo, S. S.; Kim, D. E. Effects of Vibration Frequency and Amplitude on Friction Reduction and Wear Characteristics of Silicon. Tribol. Int. 2016, 94, 198–205. DOI: 10.1016/j.triboint.2015.08.025.
  • Whittaker, D. PM Structural Parts Move to Higher Density and Performance. Powder Metall. 2007, 50, 99–105. DOI: 10.1179/174329007X209114.
  • Bains, P. S.; Sidhu, S. S.; Payal, H. S. Fabrication and Machining of Metal Matrix Composites: A Review. Mater. Manuf. Process. [Internet]. 2016, 31, 553–573. DOI: 10.1080/10426914.2015.1025976
  • Zheng, L.; Gao, Y.; Zhong, Y.; Lu, G.; Liu, Z.; Ren, L. The Size Effect of Hexagonal Texture on Tribological Properties under Mixed Lubrication. Ind. Lubr. Tribol. 2018, 70, 1798–1805. DOI: 10.1108/ILT-12-2017-0391.
  • Rao, X.; Sheng, C.; Guo, Z.; Yuan, C. Influence of Surface Groove Width on Tribological Performance for Cylinder Liner–Piston Ring Components. Tribol. Trans. [Internet]. 2019, 62, 239–248. DOI: 10.1080/10402004.2018.1539201
  • Zhan, J.; Yang, M. Investigation on Dimples Distribution Angle in Laser Texturing of Cylinder-Piston Ring System. Tribol. Trans. 2012, 55, 693–697. DOI: 10.1080/10402004.2012.694581.
  • Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P. Densification Rate of Metal Powders during Hot Uniaxial Compaction. Powder Metall. 2011, 55, 388–394. DOI: 10.1179/1743290111Y.0000000010.
  • Mamedov, V. Spark Plasma Sintering as Advanced PM Sintering Method. Powder Metall. [Internet]. 2002, 45, 322–328. DOI: 10.1179/003258902225007041
  • Capus, J. M. PowderMet2009: Prospects Improving after Automotive Debacle. Powder Metall. 2009, 52, 274–277. DOI: 10.1179/003258909X12519739853065.
  • Chang, S. H.; Liang, C.; Huang, J. R.; Huang, K.-T. Cr50Cu50 Alloys Produced from Submicrometre Structured Powders through Hot Pressing at Different Pressures. Powder Metall. 2016, 59, 142–147. DOI: 10.1080/00325899.2015.1132033.
  • Mitra, R. Intermetallic Matrix Composites - Properties and Applications; Jones, G., Ed.; Matthew Deans, Sawston, Cambridge, 2018.
  • Zou, Q.-H.; Zhao, H. M.; Zhang, D.-Y.; Geng, M.; Wang, Z. G.; Lu, J. J. Thermophysics Characteristics and Densification of Powder Metallurgy Composites. Powder Metall. 2006, 49, 183–188. DOI: 10.1179/174329006X111519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.