331
Views
12
CrossRef citations to date
0
Altmetric
Articles

Manufacturing large 2219 Al–Cu alloy rings by a cold rolling process

, , , , , & show all
Pages 291-302 | Received 02 Aug 2019, Accepted 10 Jan 2020, Published online: 30 Jan 2020

References

  • Kaibyshev, R.; Sitdikov, O.; Mazurina, I.; Lesuer, D. R. Deformation Behaviour of a 2219 Al Alloy. Mater. Sci. Eng. A. 2002, 334(1), 104–113. DOI: 10.1016/S0921-5093(01)01777-4.
  • He, H.; Yi, Y.; Huang, S.; Zhang, Y. An Improved Process for Grain Refinement of Large 2219 Al Alloy Rings and Its Influence on Mechanical Properties. J. Mater. Sci. Technol. 2019, 35, 55–63. DOI: CNKI:SUN:CLKJ.0.2019-01-009.
  • He, H.; Yi, Y.; Huang, S.; Zhang, Y. Effects of Deformation Temperature on Second-phase Particles and Mechanical Properties of 2219 Al-Cu Alloy. Mater. Sci. Eng. A 2018, 712(17), 414–423. DOI: 10.1016/j.msea.2017.11.124.
  • Liu, W.; Zhang, J.; Zhang, Z.; Wang, D.; Xu, C.; Zong, X.; Kaibo, N. High-strength Mg95Y3Zn1Ni1 Alloy with LPSO Structure Processed by Hot Rolling. Mater. Manuf. Processes 2017, 32(1), 62–68. DOI: 10.1080/10426914.2015.1127958.
  • Lee, S.; Yen, C.; Tzeng, Y.; Nieh, J.; Bor, H.; Liu, G. Effects of CCEP and Sc on Superplasticity of Al–5.6Mg–0.7Mn Alloys. Mater. Manuf. Processes 2018, 33(8), 867–872. DOI: 10.1080/10426914.2017.1376071.
  • Meyers, M.; Chawla, K. Mechanical Behavior of Materials, 2nd ed.; Cambridge University Press: USA, 2009; pp 489–491.
  • Ma, P.; Qian, L.; Meng, J.; Liu, S.; Zhang, F. Fatigue Crack Growth Behaviour of a Coarse-and a Fine-grained High Manganese Austenitic Twin-induced Plasticity Steel. Mater. Sci. Eng. A 2014, 605(6), 160–166. DOI: 10.1016/j.msea.2014.03.035.
  • Guo, W. F.; Yi, Y. P.; Huang, S. Q.; He, H. L.; Fang, J. Effects of Warm Rolling Deformation on the Microstructure and Ductility of Large 2219 Al-Cu Alloy Rings. Met. Mater. Int. 2019. DOI: 10.1007/s12540-019-00303-5.
  • Qiao, X. G.; Gao, N.; Starink, M. J. A Model of Grain Refinement and Strengthening of Al Alloys Due to Cold Severe Plastic Deformation. Philos. Mag. 2012, 92(4), 446–470. DOI: 10.1080/14786435.2011.616865.
  • Singla, A. K.; Singh, J.; Sharma, V. S. Processing of Materials at Cryogenic Temperature and Its Implications in Manufacturing: A Review. Mater. Manuf. Processes. 2018, 33(15), 1603–1640. DOI: 10.1080/10426914.2018.1424908.
  • Qiao, X. G.; Starink, M. J. Prediction of Hardness of Al Alloys Processed by Accumulative Roll Bonding. Mater. Sci. Eng. A. 2012, 531(1), 45–50. DOI: 10.1016/j.msea.2011.10.005.
  • Starink, M. J.; Qiao, X. G.; Zhang, J. W.; Gao, N. Predicting Grain Refinement by Cold Severe Plastic Deformation in Alloys Using Volume Average Dislocation Generation. Acta. Materialia. 2009, 57(19), 5796–5811. DOI: 10.1016/j.actamat.2009.08.006.
  • Kandarp, C.; Hariharan, K.; Ravi. Development of Combined Groove Pressing and Rolling to Produce Ultra-fine Grained Al Alloys and Comparison with Cryorolling. Mater. Sci. Eng. A. 2019, 760(8), 7–18. DOI: 10.1016/j.msea.2019.05.088.
  • Huo, W. T.; Hou, L. G.; Cui, H.; Zhuang, L. Z.; Zhang, J. S. Fine-grained AA 7075 Processed by Different Thermo-mechanical Processings. Mater. Sci. Eng. A. 2014, 618(17), 244–253. DOI: 10.1016/j.msea.2014.09.026.
  • He, H.; Yi, Y.; Huang, S.; Zhang, Y. Effects of Cold Predeformation on Dissolution of Second-phase Al2Cu Particles during Solution Treatment of 2219 Al-Cu Alloy Forgings. Mater. Charact. 2017, 135, 18–24. DOI: 10.1016/j.matchar.2017.10.026.
  • Kê, T. S.; Fang, Q. F. Theory of Nonlinear Anelastic Internal Friction Peaks. I. The Migration of Solute Atoms in Dislocation Core. Phys. Status. Solidi. A. 1996, 158(1), 57–65. DOI: 10.1002/pssa.2211580108.
  • Marceau, R. K. W.; Qiu, C.; Ringer, S. P.; Hutchinson, C. R. A Study of the Composition Dependence of the Rapid Hardening Phenomenon in Al–Cu–Mg Alloys Using Diffusion Couples. Mater. Sci. Eng. A. 2012, 546(1), 153–161. DOI: 10.1016/j.msea.2012.03.043.
  • Xu, X. J.; Cao, J. Q.; Cheng, X. N.; Mo, J. P. Tensile Properties of 2024 Al Alloy Processed by Enhanced Solid-solution and Equal-channel Angular Pressing. T. Nonferr. Metal. Soc. 2006, 35(s2), 395–397.
  • Youssef, K. M.; Scattergood, R. O.; Murty, K. L.; Koch, C. C. Nanocrystalline Al–Mg Alloy with Ultrahigh Strength and Good Ductility. Scripta. Mater. 2006, 54(2), 251–256. DOI: 10.1016/j.scriptamat.2005.09.028.
  • Tański, T.; Snopiński, P.; Borek, W. Strength and Structure of AlMg3 Alloy after ECAP and Post-ECAP Processing. Mater. Manuf. Processes. 2017, 32(12), 1368–1374. DOI: 10.1080/10426914.2016.1257131.
  • Penlington, A. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy. M.A.Sc. Queen’s University, 2013.
  • Zhang, J.; Li, W. G.; Guo, Z. X. Static Recrystallization and Grain Growth during Annealing of an Extruded Mg–Zn–Zr–Er Magnesium Alloy. J. Magn. Alloy. 2013, 1(1), 31–38. DOI: 10.1016/j.jma.2013.02.012.
  • Pal, D.; Stucker, B. A Study of Subgrain Formation in Al 3003 H-18 Foils Undergoing Ultrasonic Additive Manufacturing Using A Dislocation Density Based Crystal Plasticity Finite Element Framework. J. Appl. Phys. 2013, 113(20), 64. DOI: 10.1063/1.4807831.
  • Zuo, J. R.; Hou, L. G.; Shi, J. T.; Cui, H.; Zhuang, L. Z.; Zhang, J. S. The Mechanism of Grain Refinement and Plasticity Enhancement by an Improved Thermomechanical Treatment of 7055 Al Alloy. Mater. Sci. Eng. A. 2017, 702, 42–52. DOI: 10.1016/j.msea.2017.06.106.
  • Haghdadi, N.; Zarei-Hanzaki, A.; Roostaei, A. A.; Hemmati, A. R. Evaluating the Mechanical Properties of a Thermomechanically Processed Unmodified A356 Al Alloy Employing Shear Punch Testing Method. Mater. Des. 2013, 43, 419–425. DOI: 10.1016/j.matdes.2012.07.001.
  • Liu, Q.; Qi, F. G.; Wang, Q. H. M.; Ding, K. Y.; Liu, C. Y.; Li, C. The Influence of Particles Size and Its Distribution on the Degree of Stress Concentration in Particulate Reinforced Metal Matrix Composites. Mater. Sci. Eng. A. 2018, 731(25), 351–359. DOI: 10.1016/j.msea.2018.06.067.
  • Vinod Kumar, G. S.; Murty, B. S.; Chakraborty, M. Effect of TiAl3 Particles Size and Distribution on Their Settling and Dissolution Behavior in Aluminium. J. Mater. Sci. 2010, 45, 2921–2929. DOI: 10.1007/s10853-010-4284-z.
  • Shaterani, P.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S. M.; Hassas-Irani, S. B. The Second Phase Particles and Mechanical Properties of 2124 Aluminum Alloy Processed by Accumulative Back Extrusion. Mater. Des. 2014, 58, 535–542. DOI: 10.1016/j.matdes.2014.01.078.
  • Porter, D. A.; Easterling, K. E.; Sherif, M. Y. Phase Transformations in Metals and Alloys, 3rd ed.; Taylor & Francis Group: UK, 2009; pp 55–60.
  • Li, J. H.; Han, L.; Duan, J. A.; Zhong, J. H. Interface Mechanism of Ultrasonic Flip Chip Bonding. Appl. Phys. Lett. 2007, 90(24), 242902. DOI: 10.1063/1.2747673.
  • Villars, P.; Prince, A.; Okamoto, H. Handbook of Ternary Alloy Phase Diagrams; ASM Intemational: Materials Park, 1994.
  • Liu, Z. Y.; Li, Y. T.; Liu, Y. B. Development of Al-Cu-Mg-Ag Alloys. T. Nonferr. Metal. Soc. 2007, 17(12), 1905–1915.
  • Zhu, A. W.; Starke, E. A., Jr. Strengthening Effect of Unshearable Particles of Finite Size: A Computer Experimental Study. Acta. Metall. 1999, 47(11), 3263–3269. DOI: 10.1016/s1359-6454(99)00179-2.
  • Wang, S. C.; Starink, M. J. Precipitates and Intermetallic Phases in Precipitation Hardening Al–Cu–Mg–(Li) Based Alloys. Int. Mater. Rev. 2005, 50(4), 193–215. DOI: 10.1179/174328005X14357.
  • Fribourg, G.; Bréchet, Y.; Deschamps, A.; Simar, A. Microstructure-based Modelling of Isotropic and Kinematic Strain Hardening in a Precipitation-hardened Aluminum Alloy. Acta. Mater. 2011, 59(9), 3621–3635. DOI: 10.1016/j.actamat.2011.02.035.
  • Zhao, Q. L.; Holmedal, B. Modelling Work Hardening of Aluminium Alloys Containing Dispersoids. Philos. Mag. 2013, 93(23), 3142–3153. DOI: 10.1080/14786435.2013.805271.
  • Zhong, Q. P.; Zhao, Z. H. The Study of Fracture; Higher Education Press: Beijing, 2006; pp 7.
  • Thomason, P. F.;. A Three-dimensional Model for Ductile Fracture by the Growth and Coalescence of Microvoids. Acta. Metall. 1985, 33(6), 1087–1095. DOI: 10.1016/0001-6160(85)90202-0.
  • Ma, G. H.; Li, R. X.; Li, R. D. Effects of Stress Concentration on Low-temperature Fracture Behaviour of A356 Alloy. Mater. Sci. Eng. A. 2016, 667, 459–467. DOI: 10.1016/j.msea.2016.05.026.
  • Jahromi, J. S. A. Transition in Fracture Micromechanism of SS70 Spray Cast Aluminum Alloy. Mater. Manuf. Processes. 2003, 18(5), 803–810. DOI: 10.1081/AMP-120024976.
  • Zhou, M. Z. Research of Relationship between Heat-treatment and Fatigue Property of Aerial 2E12 Aluminum Alloy, PhD, Central South University, 2010.
  • Wang, B. Effect of Grain Size and Residual Stress on Fatigue Properties of 2E12 Aluminum Alloy, M. A. Sc, Central South University, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.