201
Views
5
CrossRef citations to date
0
Altmetric
Articles

Fabrication of gradient-structure CuNiBe alloy bars by laser remelting and water-cooling

, , , , &
Pages 337-345 | Received 29 Jul 2019, Accepted 01 Feb 2020, Published online: 13 Feb 2020

References

  • Liu, Y.; Sundman, B.; Du, Y.; Wang, J.; Liu, S. H.; Gong, W. P.; Zhang, C. A Stepwise Thermodynamic Modeling of the Phase Diagram for the Cu–Be System. J. Mater. Sci. 2017, 53(5), 3756–3766. DOI: 10.1007/s10853-017-1777-z.
  • Zhu, D. B.; Liu, C. M.; Han, T.; Liu, Y. D.; Xie, H. P. Effects of Secondary β and γ Phases on the Work Function Properties of Cu–Be Alloys. Appl. Phys. A. 2015, 120, 1023–1026. DOI: 10.1007/s00339-015-9271-4.
  • Watanabe, C.; Monzen, R.; Ii, S.; Tsuchiya, K. Microstructure and Aging Behavior of Cu-Be Alloy Processed by High-pressure Torsion. Mater. Sci. Forum. 2014, 783–786, 2707–2712. DOI: 10.4028/www.scientific.net/MSF.783-786.2707.
  • Tanahashi, M.; Miura, J.; Iwadachi, T.; Nojiri, K.; Fujisawa, T.; Yamauchi, C. Oxidation Behavior of Molten Cu-Be Binary and CuBe-X (X = Ca or Zr) Ternary Alloys at 1423 K (1150°C) under Controlled Oxygen Partial Pressure. Metall. Mater. Trans. B. 2016, 48, 554–563. DOI: 10.1007/s11663-016-0849-9.
  • Monzen, R.; Hosoda, T.; Takagawa, Y.; Watanabe, C. Bend Formability and Strength of Cu–Be–Co Alloys. J. Mater. Sci. 2011, 46, 4284–4289. DOI: 10.1007/s10853-010-5232-7.
  • Matsuyama, M.; Shinmura, K.; Chen, Z.; Torikai, Y. Solubility of Tritium in Cu-Be Alloy. Fusion Sci. Technol. 2011, 60, 1491–1494. DOI: 10.13182/FST11-A12714.
  • Zhao, Z. G.; Liu, J. W.; Lu, S. Q.; Xiao, Y. N.; Yuan, M. H. Deformation Mechanisms in Highly Elastic Softened-state Cu–Be Alloy at Elevated Temperatures. Phys. Met. Metall. 2018, 119(1), 69–75. DOI: 10.1134/S0031918X18010064.
  • Zhu, Z. Y.; Cai, Y. F.; Sui, Y.; Song, K. X.; Zhou, Y. J.; Zou, J. S. Precipitation Characteristics of the Metastable γ″ Phase in a Cu-Ni-Be Alloy. Materials. 2018, 11(8), 1394. DOI: 10.3390/ma11081394.
  • Peng, L. J.; Xiong, B. Q.; Xie, G. L.; Wang, Q. S.; Hong, S. B. Precipitation Process and Its Effects on Properties of Aging Cu-Ni-Be Alloy. Rare Met. 2013, 32(4), 332–337. DOI: 10.1007/s12598-013-0074-5.
  • Osinskaya, Y. V.; Petrov, S. S.; Pokoev, S. S.; Radzhabov, A. K.; Runov, V. V. Kinetics of Aging of the Cu-Be Alloy with Different Beryllium Concentrations in an External Constant Magnetic Field. Phys. Solid State. 2012, 54(3), 568–572. DOI: 10.1134/S1063783412030249.
  • Lim, Y.; Lee, K.; Moon, S. Effects of a Post-weld Heat Treatment on the Mechanical Properties and Microstructure of a Friction-stir-welded Beryllium-copper Alloy. Materials. 2018, 9(4), 461. DOI: 10.3390/met9040461.
  • He, S. J.; Jiang, Y. B.; Xie, J. X.; Li, Y. H.; Yue, L. J. Effects of Ni Content on the Cast and Solid-solution Microstructures of Cu-0.4wt%Be Alloys. Int. J. Min. Metall. Mater. 2018, 25(6), 641–651. DOI: 10.1007/s12613-018-1611-x.
  • Karjalainen, L. P. Fatigue-hardening and High-cycle Fatigue Life of Copper and Cu-Zn Alloy under Reversed Bending. Metall. Sci. 1978, 12, 571–575. DOI: 10.1179/msc.1978.12.12.571.
  • Savkin, A. N.; Sunder, R.; Andronik, A. V.; Sedov, A. A. Effect of Overload on the Near-threshold Fatigue Crack Growth Rate in a 2024-T3 Aluminum Alloy: I. Effect of the Character, the Magnitude, and the Sequence of Overload on the Fatigue Crack Growth Rate. Russ. Metall. 2018, 2018, 1094–1099. DOI: 10.1134/S0036029518110113.
  • Savkin, A. N.; Sunder, R.; Andronik, A. V.; Sedov, A. A. Effect of Overload on the Near-threshold Fatigue Crack Growth Rate in a 2024-T3 Aluminum Alloy: II. Fatigue Crack Growth Simulation for Calculating the Fatigue Life under Alternating Loading. Russ. Metall. 2019, 2019, 542–547. DOI: 10.1134/S0036029519050100.
  • Li, Y.; Zhan, X. H.; Gao, C. Y.; Wang, H. E.; Yang, Y. Comparative Study of Infrared Laser Surface Treatment and Ultraviolet Laser Surface Treatment of CFRP Laminates. Int. J. Adv. Manuf. Technol. 2019, 102, 4059–4071. DOI: 10.1007/s00170-019-03368-z.
  • Segurado, E.; Belzunce, F. J.; Fernandez, P. I. Mechanical Surface Treatments to Optimize the Fatigue Behavior of Quenched and Tempered High Strength Steels. Int. J. Adv. Manuf. Technol. 2018, 96, 1225–1235. DOI: 10.1007/s00170-017-1533-1.
  • Villegas, J. B.; Shaw, L. L.; Dai, K.; Yuan, W. Enhanced Fatigue Resistance of a Nickel-based Hastelloy Induced by a Surface Nanocrystallization and Hardening Process. Philos. Mag. Lett. 2005, 85(8), 427–438. DOI: 10.1080/09500830500311705.
  • Ren, C. X.; Wang, Q.; Zhang, Z. J.; Zhu, Y. K.; Zhang, Z. F. A Novel Method for Achieving Gradient Microstructure in A Cu–Al Alloy: Surface Spinning Strengthening (3S). Acta Metall. Sin. 2017, 30(3), 212–217. DOI: 10.1007/s40195-017-0551-1.
  • Song, B.; Zhao, H. Z.; Chai, L. J.; Guo, N.; Pan, H. C.; Chen, H. B.; Xin, R. L. Preparation and Characterization of Mg Alloy Rods with Gradient Microstructure by Torsion Deformation. Met. Mater. Int. 2016, 22(5), 887–896. DOI: 10.1007/s12540-016-6226-z.
  • Mao, X. Y.; Chen, H.; Yang, H. Y.; Yao, Y.; Wang, H. X. Corrosion Resistance Behavior of Gradient Microstructure Induced by Punching Deformation and Recovery Treatment on Cupronickel Alloy Surface. Rare Met. 2017, 36(12), 971–976. DOI: 10.1007/s12598-016-0725-4.
  • Liao, Q.; Zhu, L. Q.; Liu, H. C.; Li, W. P. Mechanical Properties of Electroformed Copper Layers with Gradient Microstructure. Int. J. Miner. Metall. Mater. 2010, 17(1), 69–74. DOI: 10.1007/s12613-010-0112-3.
  • Yu, H.; Lu, C.; Tieu, K.; Li, H. J.; Godbole, A.; Liu, X.; Kong, C. Microstructure and Mechanical Properties of Large-volume Gradient-structure Aluminum Sheets Fabricated by Cyclic Skin-pass Rolling. Philos. Mag. 2019, 99, 2265–2284. DOI: 10.1080/14786435.2019.1619948.
  • Wang, X.; Li, Y. S.; Zhang, Q.; Zhao, Y. H.; Zhu, Y. T. Gradient Structured Copper by Rotationally Accelerated Shot Peening. J. Mater. Sci. Tech. 2017, 33(7), 758–761. DOI: 10.1016/j.jmst.2016.11.006.
  • Long, J. Z.; Pan, Q. S.; Tao, N. R.; Lu, L. Abnormal Grain Coarsening in Cyclically Deformed Gradient Nanograined Cu. Scr. Mater. 2018, 145, 99–103. DOI: 10.1016/j.scriptamat.2017.10.019.
  • Yang, M.; Li, R.; Jiang, P.; Yuan, F.; Wang, Y.; Zhu, Y.; Wu, X. Residual Stress Provides Significant Strengthening and Ductility in Gradient Structured Materials. Mater. Res. Lett. 2019, 7, 433–438. DOI: 10.1080/21663831.2019.1635537.
  • Lu, K. Making Strong Nanomaterials Ductile with Gradients. Science. 2014, 345(6203), 1455–1456. DOI: 10.1126/science.1255940.
  • Li, Y.; Li, L.; Nie, J.; Cao, Y.; Zhao, Y.; Zhu, Y. Microstructural Evolution and Mechanical Properties of a 5052 Al Alloy with Gradient Structures. J. Mater. Res. 2017, 32, 4443–4451. DOI: 10.1557/jmr.2017.310.
  • Deng, S. Q.; Godfrey, A. W.; Liu, W.; Zhang, C. L.; Xu, B. Effects of Normal Stress, Surface Roughness, and Initial Grain Size on the Microstructure of Copper Subjected to Platen Friction Sliding Deformation. Int. J. Miner. Metall. Mater. 2016, 23, 57–69. DOI: 10.1007/s12613-016-1211-6.
  • Ren, L. B.; Quan, G. F.; Boehlert, C. J.; Zhou, M. Y.; Guo, Y. Y.; Fan, L. L. The Microstructure Evolution and Deformation Behavior of AZ80 during Gradient Increment Cyclic Loading. Metall. Mater. Trans. A. 2018, 49, 3692–3702. DOI: 10.1007/s11661-018-4687-z.
  • Rogozhin, V. V.; Ananeva, E. Y.; Abramov, A. M. Side Effects in Electrolytic Deposition of Nickel–boron Coatings. Russ. J. Appl. Chem. 2016, 89(9), 1552–1555. DOI: 10.1134/S1070427216090251.
  • Wang, P.; He, Y. D.; Deng, S. J.; Zhang, J. Porous α-Al2O3 Thermal Barrier Coatings with Dispersed Pt Particles Prepared by Cathode Plasma Electrolytic Deposition. Int. J. Miner. Metall. Mater. 2016, 23, 92–101. DOI: 10.1007/s12613-016-1215-2.
  • Chen, K.; Zeng, L. G.; Li, Z. J.; Chai, L. J.; Wang, Y. Y.; Chen, L. Y.; Yu, H. L. Effects of Laser Surface Alloying with Cr on Microstructure and Hardness of Commercial Purity Zr. J. Alloy. Compd. 2019, 784, 1106–1112. DOI: 10.1016/j.jallcom.2019.01.097.
  • Chai, L. J.; Yuan, S. S.; Huang, W. J.; Yang, X. S.; Wang, F. J.; Wang, D. Z.; Wang, J. J. Microstructural Characterization of Inconel 718 Alloy after Pulsed Laser Surface Treatment at Different Powers. Trans. Nonfer. Metal. Soc. China. 2018, 28, 1530–1537. DOI: 10.1016/S1003-6326(18)64794-6.
  • Wu, M. T.; Guo, B.; Zhao, Q. L. Laser Machining Micro-structures on Diamond Surface with a Sub-nanosecond Pulsed Laser. Appl. Phys. A. 2018, 124, 170. DOI: 10.1007/s00339-018-1594-5.
  • Ma, Q. S.; Li, Y. J.; Wang, J.; Liu, K. Homogenization of Carbides in Ni60/WC Composite Coatings Made by Fiber Laser Remelting. Mater. Manuf. Process. 2015, 30(12), 1417–1424. DOI: 10.1080/10426914.2015.1026353.
  • Yilbas, B. S.; Akhtar, S. S.; Matthews, A.; Karatas, C. Laser Remelting of Zirconia Surface: Investigation into Stress Field and Microstructures. Mater. Manuf. Process. 2011, 26(10), 1277–1287. DOI: 10.1080/10426914.2011.551955.
  • Grum, J.; Žnidaršič, M. Laser Refining of a Surface Layer with Silicon Carbide. Mater. Manuf. Process. 2008, 23(2), 215–219. DOI: 10.1080/10426910701815354.
  • Yang, K.; Li, J. Q.; Wang, Q. Y.; Li, Z. Y.; Jiang, Y. F.; Bao, Y. F. Effect of Laser Remelting on Microstructure and Wear Resistance of Plasma Sprayed Al2O3-40%TiO2 Coating. Wear. 2019, 426, 314–318. DOI: 10.1016/j.wear.2019.01.100.
  • Debapriya, P. K.; Muvvala, G.; Nath, A. K. Effect of Tempering on Laser Remelted AISI H13 Tool Steel. Surf. Coat. Technol. 2019, 361, 136–149. DOI: 10.1016/j.surfcoat.2019.01.022.
  • Zhang, D.; Qin, Y.; Feng, W.; Huang, M.; Wang, X. Y.; Yang, S. Microstructural Evolution of the Amorphous Layers on Mg-Zn-Ca Alloy during Laser Remelting Process. Surf. Coat. Tech. 2019, 363, 87–94. DOI: 10.1016/j.surfcoat.2019.02.051.
  • Kaynak, Y.; Porosity, K. O.; Quality, S. Microhardness and Microstructure of Selective Laser Melted 316L Stainless Steel Resulting from Finish Machining. J. Manuf. Mater. Process. 2018, 2, 36. DOI: 10.3390/jmmp2020036.
  • Zhao, X. H.; Zhang, H. C.; Liu, Y. Effect of Laser Surface Remelting on the Fatigue Crack Propagation Rate of 40Cr Steel. Results. Phys. 2019, 12, 424–431. DOI: 10.1016/j.rinp.2018.11.097.
  • Zhang, P. P.; Zhang, X. F.; Li, F. H.; Zhang, Z. Z.; Wang, Y. L.; Li, H.; Ren, L. Q.; Liu, M. Hot Corrosion Behavior of YSZ Thermal Barrier Coatings Modified by Laser Remelting and Al Deposition. J. Therm. Spray. Technol. 2019, 28(6), 1225–1238. DOI: 10.1007/s11666-019-00880-2.
  • Ni, Y. Q.; Dong, G. N.; Tong, Z.; Li, X.; Wang, W. Effect of Laser Remelting on Tribological Properties of Babbitt Alloy. Mater. Res. Express. 2019, 6(9), 096570. DOI: 10.1088/2053-1591/ab308d.
  • Jiang, C. P.; Chen, H.; Wang, G.; Chen, Y. N.; Xing, Y. Z.; Zhang, C. H.; Dargusch, M. Improvements in Microstructure and Wear Resistance of Plasma-sprayed Fe-based Amorphous Coating by Laser-remelting. J. Therm. Spray. Technol. 2017, 26, 778–786. DOI: 10.1007/s11666-017-0546-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.