144
Views
18
CrossRef citations to date
0
Altmetric
Articles

Magnetorheological based minimum quantity lubrication (MR-MQL) with additive n-CuO

ORCID Icon & ORCID Icon
Pages 405-414 | Received 24 Sep 2019, Accepted 14 Feb 2020, Published online: 26 Feb 2020

References

  • Duran, J. D. G.; Iglesias, G. R.; Delgado, A. V.; Ruiz-Moron, L. F.; Insa, J.; Gonzalez-Caballero, F. Stability and Flow Behaviour of a Magnetorheological Lubricant in a Magnetic Shock Absorber. Tribo. Trans. 2008, 51, 271–277. DOI: 10.1080/10402000701793963.
  • Oleksandr, G.; Volodymyr, B.; Sverker, B.; Jan-Eric, S. Influence of GnP Additive to Vegetable Oil on Machining Performance When MQCL-assisted Turning Alloy 718. Proc. Manuf. 2018, 25, 330–337. DOI: 10.1016/j.promfg.2018.06.091.
  • Maruda, R. W.; Krolczyk, G. M.; Niesłony, P.; Krolczyk, J. B.; Legutko.Chip, S. Formation Zone Analysis during the Turning of Austenitic Stainless Steel 316L under MQCL Cooling Condition. Proce. Eng. 2016, 149, 297–304. DOI: 10.1016/j.proeng.2016.06.670.
  • Nath, C.; Kapoor, S. G.; Srivastava, A. K. Finish Turning of Ti-6Al-4V with the Atomization-Based Cutting Fluid (ACF) Spray System. J. Manuf. Process. 2017, 28, 464–471. DOI: 10.1016/j.jmapro.2017.04.013.
  • Yu, S.; Ning, H.; Liang, L. Effect of Cryogenic Minimum Quantity Lubrication (CMQL) on Cutting Temperature and Tool Wear in High-speed End Milling of Titanium Alloys. App. Mecha. Mater. 2010, 34–35, 1816–1821. DOI: 10.4028/www.scientific.net/AMM.34-35.1816.
  • Chidambaram, E. L.; Arunachalam, N.; Vijayaraghavan, L. Analytical Model to Predict Sauter Mean Diameter in Air Assisted Atomizers for MQL in Machining Application. Proce. CIRP. 2015, 37, 117–121. DOI: 10.1016/j.procir.2015.09.007.
  • Manoj Kumar, K.; Ghosh, A. Assessment of Cooling-Lubrication and Wettability Characteristics of Nano-Engineered Sunflower Oil as Cutting Fluid and Its Impact on SQCL Grinding Performance. J. Mater. Proc. Technol. 2016, 237, 55–64. DOI: 10.1016/j.jmatprotec.2016.05.030.
  • Saberi, A.; Rahimi, A. R.; Parsa, H.; Ashrafijou, M.; Rabiei, F. Improvement of Surface Grinding Process Performance of CK45 Soft Steel by Minimum Quantity Lubrication (MQL) Technique Using Compressed Cold Air Jet from Vortex Tube. J. Clea. Prod. 2016, 131, 728–738. DOI: 10.1016/j.jclepro.2016.04.104.
  • Huang, S.; Lv, T.; Xu, X.; Ma, Y.; Wang, M. Experimental Evaluation on the Effect of Electrostatic Minimum Quantity Lubrication (EMQL) in End Milling of Stainless Steels. Mach. Sci. Technol. 2017, 22(2), 271–286. DOI: 10.1080/10910344.2017.1337135.
  • Yan, L.; Zhang, Q.; Yu, J. Effects of Continuous Minimum Quantity Lubrication with Ultrasonic Vibration in Turning of Titanium Alloy. J. Adv. Manuf. Technol. 2018, 98(1–4), 827–837. DOI: 10.1007/s00170-018-2323-0.
  • Khandekar, S.; Ravi Sankar, M.; Agnihotri, V.; Ramkumar, J. Nano-Cutting Fluid for Enhancement of Metal Cutting Performance. Mater. Manuf. Process. 2012, 27, 1–5. DOI: 10.1080/10426914.2011.610078.
  • Daniel, G.; Matthias, B.; Trixi, M.; Sven, A.; Nicolai, O.; Nico, H. Investigation of the Influence of Lubricating Oils on the Turning of Metallic Materials with Cryogenic Minimum Quantity Lubrication. Proced. CIR.P. 2019, 80, 95–100. DOI: 10.1016/j.procir.2019.01.005.
  • Sam Paul, P.; Varadarajan, A. S.; Mohanasundaram, B. S. Effect of Magnetorheological Fluid on Tool Wear During Hard Turning with Minimal Fluid Application. Arch. Civ. Mech. Eng. 2014, 15, 124–132. DOI: 10.1016/j.acme.2014.03.007.
  • Antonio, J. F. B.; Juande, V. Boundary Lubrication of Magneto Rheological Fluids in PTFE. Steel Point Contacts. Wear. 2012, 296, 484–490. DOI: 10.1016/j.wear.2012.08.012.
  • Barkan, M. K.; Faramarz, G.; Wang, X. Study of a Magneto Rheological Grease Clutch. Smart Mater. Struct. 2013, 22, 125030. DOI: 10.1088/0964-1726/22/12/125030.
  • Xiaohu, W.; Hongguang, L.; Ming, L.; Huiyu, B.; Hua Zhang, G. Dynamic Characteristics of Magnetorheological Fluid Lubricated Journal Bearing and Its Application to Rotor Vibration Control. J. Vib. Eng. 2015, 17(4), 1392–8716..
  • Bhosale, M. A.; Karekar, S. C.; Bhanage, B. M. Room Temperature Synthesis of Copper Oxide Nanoparticles: Morphological Evaluation and Their Catalytic Applications for Degradation of Dyes and C-N Bond Formation Reaction. J. Chem. Sele. 2016, 1, 6297–6307. DOI: 10.1002/slct.201601484.
  • Forero-Sandoval, I. Y.; Vega-Flick, A.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A. Study of Thermal Conductivity of Magnetorheological Fluids Using the Thermal-Wave Resonant Cavity and Its Relationship with the Viscosity. Smart. Mater. Struct. 2016, 26(2), 1–10. DOI: 10.1088/1361-665X/26/2/025010.
  • Thiyagu, M.; Karunamoorthy, L.; Arun Kumar, N. Magnetorheological Fluid-Based Nanotexturing of Tool Inserts for Turning of Duplex Stainless Steel. Mater. Manuf. Process. 2016, 32(9), 1019–1025. DOI: 10.1080/10426914.2016.1257136.
  • Gajrani, K. K.; Suvin., P. S.; Satish Vasu, K.; Ravi Sankar, M. Thermal, Rheological, Wettability and Hard Machining Performance of MoS2 and CaF2 Based Minimum Quantity Hybrid Nano-Green Cutting Fluids. J. Mater. Proc. Technol. 2018. DOI: 10.1016/j.jmatprotec.2018.10.036.
  • Tran Minh, D.; Long., T. T.; Chien, T. Q. Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. J. Lubri. 2019, 7, 40. DOI: 10.3390/lubricants7050040.
  • Padmini, R.; Vamsi Krishna, P.; Rao, K. M. Experimental Evaluation of Nano-Molybdenum Disulpide and Nano-Boric Acid Suspensions in Vegetable Oils as Prospective Cutting Fluids During Turning of AISI 1040 Steel. J. Eng. Tribol. 2015, 1–13. DOI: 10.1177/1350650115601694.
  • Seval, G.; Pradeep, P. Phule. Rhelogical Properties of Magnetorheological Fluids. J. Smart. Mat. Struct. 2002, 11, 140–146. DOI: 10.1088/0964-1726/11/1/316.
  • Thiyagu, M.; Karunamoorthy, L.; Arun Kumar, N. Thermal and Tool Wear Characterization of Graphene Oxide Coated through Magnetorheological Fluids on Cemented Carbide Tool Inserts. Arch. Civ. Mech. Eng. 2019, 19(4), 1043–1055. DOI: 10.1016/j.acme.2019.05.005.
  • Doshi, S. J. Conceptual Review on Effects of Application of Nano Particle Inclusion on Tool Wear during Machining of Difficult to Cut Materials. J. Adv. Eng. Res. Dev. 2017, 4(9), 2348–4470. DOI: 10.21090/ijaerd.81265.
  • Lee, S.; Choi, S. U. S.; Li, S. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transf. 1999, 121(2), 280–289. DOI: 10.1115/1.2825978.
  • Srikant, R.; Prasad, M.; Amrita, M.; Sitaramaraju, A.; Krishna, P. V. Nanofluids as A Potential Solution for Minimum Quantity Lubrication: A Review. Proceedings of the Institution of Mechanical Engineers. Part B: J. Eng. Manuf. 2013, 228(1), 3–20. DOI: 10.1177/0954405413497939.
  • Sayuti, M.; Ahmed, A. D. S.; Salem, F. Novel Uses of SiO2 Nano-Lubrication System in Hard Turning Process of Hardened Steel AISI4140 for Less Tool Wear, Surface Roughness and Oil Consumption. J. Clean. Prod. 2014, 67, 265–276. DOI: 10.1016/j.jclepro.2013.12.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.