385
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Influence of processing temperature on formability of thin-rolled DP590 steel sheet

, , &
Pages 901-909 | Received 03 Feb 2020, Accepted 09 Mar 2020, Published online: 21 Apr 2020

References

  • Bhagat, A. N.; Singh, A.; Gope, N.; Venugopalan, T. Development of Cold-Rolled High-Strength Formable Steel for Automotive Applications. Mater. Manuf. Processes. 2010, 25(1–3), 202–205. DOI: 10.1080/10426910903202328.
  • Matlock, D. K.; Speer, J. G. Processing Opportunities for New Advanced High-Strength Sheet Steels. Mater. Manuf. Processes. 2010, 25(1–3), 7–13. DOI: 10.1080/10426910903158272.
  • Wang, H.; Han, R.; Zhang, Z.; Zhu, M.; Liu, L. Riveting–Welding Hybrid Bonding of High-Strength Steel and Aluminum Alloy. Mater. Manuf. Processes. 2019, 34(15), 1671–1680. DOI: 10.1080/10426914.2019.1683574.
  • Bachniak, D.; Rauch, L.; Pietrzyk, M.; Kusiak, J. Selection of the Optimization Method for Identification of Phase Transformation Models for Steels. Mater. Manuf. Processes. 2017, 32(11), 1248–1259. DOI: 10.1080/10426914.2017.1292035.
  • Pandre, S.; Kotkunde, N.; Takalkar, P.; Morchhale, A.; Sujith, R.; Singh, S. K. Flow Stress Behavior, Constitutive Modeling, and Microstructural Characteristics of DP 590 Steel at Elevated Temperatures. J. Mater. Eng. Perform. 2019, 28(12), 7565–7581. DOI: 10.1007/s11665-019-04497-y.
  • Hariharan, K.; Balachandran, G.; Prasad, M. S. Application of Cost-Effective Stainless Steel for Automotive Components. Mater. Manuf. Processes. 2009, 24(12), 1442–1452. DOI: 10.1080/10426910903179989.
  • Pandre, S.; Takalkar, P.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Prediction Capability of Anisotropic Yielding Behaviour for DP590 Steel at Elevated Temperatures. Adv. Mater. Process. Technol. 2020, 1–9. DOI: 10.1080/2374068X.2020.1728647.
  • Feng, C.; Qin, G.; Meng, X.; Geng, P. Defect Evolution of 409L Stainless Steel in High-Speed TIG Welding. Mater. Manuf. Processes. 2020, 35(2), 179–186. DOI: 10.1080/10426914.2020.1711925.
  • Kotkunde, N.; Badrish, A.; Morchhale, A.; Takalkar, P.; Singh, S. K. Warm Deep Drawing Behavior of Inconel 625 Alloy Using Constitutive Modelling and Anisotropic Yield Criteria. Int. J. Mater. Form. 2019. DOI: 10.1007/s12289-019-01505-3.
  • Seyedkashi, S. M. H.; Cho, J. R.; Lee, S. H.; Moon, Y. H. Feasibility of Underwater Laser Forming of Laminated Metal Composites. Mater. Manuf. Processes. 2018, 33(5), 546–551. DOI: 10.1080/10426914.2017.1376075.
  • Badrish, A.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Parameter Optimization in the Thermo-Mechanical V-Bending Process to Minimize Springback of Inconel 625 Alloy. Arab. J. Sci. Eng. 2020. DOI: 10.1007/s13369-020-04395-9.
  • Satish, D. R.; Feyissa, F.; Kumar, D. R. Cryorolling and Warm Forming of AA6061 Aluminum Alloy Sheets. Mater. Manuf. Processes. 2017, 32(12), 1345–1352. DOI: 10.1080/10426914.2017.1317352.
  • Badrish, A.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Influence of Material Modeling on Warm Forming Behavior of Nickel Based Super Alloy. Int. J. Mater. Form. 2020. DOI: 10.1007/s12289-020-01548-x.
  • Badrish, C. A.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Experimental and Finite Element Studies of Springback Using Split-Ring Test for Inconel 625 Alloy. Adv. Mater. Process. Technol. 2020, 1–7. DOI: 10.1080/2374068X.2020.1728644.
  • Ozturk, F.; Ece, R. E.; Polat, N.; Koksal, A. Effect of Warm Temperature on Springback Compensation of Titanium Sheet. Mater. Manuf. Processes. 2010, 25(9), 1021–1024. DOI: 10.1080/10426914.2010.492056.
  • Neugebauer, R.; Altan, T.; Geiger, M.; Kleiner, M.; Sterzing, A. Sheet Metal Forming at Elevated Temperatures. CIRP Annals. 2006, 55(2), 793–816. DOI: 10.1016/j.cirp.2006.10.008.
  • Ma, B.; Liu, Z. G.; Jiang, Z.; Wu, X.; Diao, K.; Wan, M. Prediction of Forming Limit in DP590 Steel Sheet Forming: An Extended Fracture Criterion. Mater. Des. 2016, 96, 401–408. DOI: 10.1016/j.matdes.2016.02.034.
  • Shrivastava, A.; Telang, A.; Jha, A. K.; Ahmed, M. Experimental and Numerical Study on the Influence of Process Parameters in Electromagnetic Compression of AA6061 Tube. Mater. Manuf. Processes. 2019, 34(13), 1537–1548. DOI: 10.1080/10426914.2019.1655156.
  • Dewang, Y.; Panthi, S. K.; Hora, M. S. Binder Force Effect on Stretch Flange Forming of Aluminum Alloy. Mater. Manuf. Processes. 2019, 34(13), 1516–1527. DOI: 10.1080/10426914.2019.1655154.
  • Goodwin, G. M.;. Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop. SAE Tech. Pap. 1968, 60, 764–774.
  • Keeler, S. P.;. Determination of Forming Limits in Automotive Stampings. SAE Tech. 1965, 42, 683–691.
  • Hecker, S. S.;. Simple Technique for Determining Forming Limit Curves. Sheet Metal Indus. 1975, 52(11), 671–676.
  • Nakazima, K.; Kikuma, T.; Hasuka, K. Study on the Formability of Steel Sheets. Yawata Tech Rep, Sept. 1968. 1968, 264, 8517–8530.
  • Sahu, R. K.; Majumdar, S.; Prasad, B. N. Forming Limit Diagram of High Strength Steel Sheet (DP-590). Int. J. Mech. Engg. 2011, 1(2), 6.
  • Şimşir, C.; Çetin, B.; Efe, M.; Davut, K.; Bayramin, B. A Material Perspective on Consequence of Deformation Heating during Stamping of DP Steels. J. Phys. 2017, 896, 012059. DOI: 10.1088/1742-6596/896/1/012059.
  • DeArdo, A. J.; Garcia, C. I.; Cho, K.; Hua, M. New Method of Characterizing and Quantifying Complex Microstructures in Steels. Mater. Manuf. Processes. 2010, 25(1–3), 33–40. DOI: 10.1080/10426910903143415.
  • Cockcroft, M. G.; Latham, D. J. Ductility and the Workability of Metals. J. Inst. Metals. 1968, 96(1), 33–39.
  • Ko, Y. K.; Lee, J. S.; Huh, H.; Kim, H. K.; Park, S. H. Prediction of Fracture in Hub-Hole Expanding Process Using a New Ductile Fracture Criterion. Journal of Materials Processing Technology. 2007, 187–188, 358–362. DOI: 10.1016/j.jmatprotec.2006.11.071.
  • Rice, J. R.; Tracey, D. M. On the Ductile Enlargement of Voids in Triaxial Stress Fields*. J. Mech. Phys. Solids. 1969, 17(3), 201–217. DOI: 10.1016/0022-5096(69)90033-7.
  • Oh, S. I.; Chen, C. C.; Kobayashi, S. Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 2: Workability in Extrusion and Drawing. Journal of Engineering for Industry. 1979, 101(1), 36–44. DOI: 10.1115/1.3439471.
  • McClintock, F. A.;. A Criterion for Ductile Fracture by the Growth of Holes . Journal of Applied Mechanics. 1968, 35(2), 363–371. DOI: 10.1115/1.3601204.
  • Brozzo, P.; Deluca, B.; Rendina, R. A New Method for the Prediction of Formability Limits in Metal Sheets. In Proc. 7th biennal Conf. IDDR, Amsterdam; 1972.
  • Takuda, H.; Mori, K.; Fujimoto, H.; Hatta, N. Fracture Prediction in Stretch Forming Using Finite Element Simulation Combined with Ductile Fracture Criterion. Arch. Appl. Mech. 1997, 67(3), 143–150. DOI: 10.1007/s004190050106.
  • Wu, Z.; Li, S.; Zhang, W.; Wang, W. Ductile Fracture Simulation of Hydropiercing Process Based on Various Criteria in 3D Modeling. Mater. Des. 2010, 31(8), 3661–3671. DOI: 10.1016/j.matdes.2010.02.046.
  • Prasad, K. S.; Panda, S. K.; Kar, S. K.; Murty, S. V. S. N.; Sharma, S. C. Prediction of Fracture and Deep Drawing Behavior of Solution Treated Inconel-718 Sheets: Numerical Modeling and Experimental Validation. Mater. Sci. Eng. A. 2018, 733, 393–407. DOI: 10.1016/j.msea.2018.07.007.
  • Cheng, C.; Meng, B.; Han, J. Q.; Wan, M.; Wu, X. D.; Zhao, R. A Modified Lou-Huh Model for Characterization of Ductile Fracture of DP590 Sheet. Mater. Des. 2017, 118, 89–98. DOI: 10.1016/j.matdes.2017.01.030.
  • Bai, Y.; Wierzbicki, T. A Comparative Study of Three Groups of Ductile Fracture Loci in the 3D Space. Eng. Fract. Mech. 2015, 135, 147–167. DOI: 10.1016/j.engfracmech.2014.12.023.
  • Banabic, D.;. Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation; Springer-Verlag: Berlin Heidelberg, 2010.
  • Gilbertson, L. N.;, ed. Testing, A. C. E.-24 on F. Fractography and Materials Science: A Symposium; American Society for Testing and Materials: Pennsylvania, 1981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.