180
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Investigation and optimization of parameters for hard turning of OHNS steel

, , & ORCID Icon
Pages 1113-1119 | Received 30 Mar 2020, Accepted 27 Apr 2020, Published online: 08 Jun 2020

References

  • Singh, D.; Rao, P. V. A Surface Roughness Prediction Model for Hard Turning Process. Int. J. Adv. 2006, 32(11–12), 1115–1124. DOI: 10.1007/s00170-006-0429-2.
  • König, W.; Komanduri, R.; Toenshoff, H. K.; Ackershott, G. Machining of Hard Materials. CIRP Annals. 1984, 33(2), 417–427. DOI: 10.1016/S0007-8506(16)30164-0.
  • Tönshoff, H. K.; Arendt, C.; Amor, R. B. Cutting of Hardened Steel. CIRP Annals. 2000, 49(2), 547–566. DOI: 10.1016/S0007-8506(07)63455-6.
  • Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Oganyan, G.; Andreev, N.; Milovich, F. Investigation of Wear Dynamics for Cutting Tools with Multilayer Composite Nanostructured Coatings in Turning Constructional Steel. Wear. 2019, 420421, 17–37. DOI: 10.1016/j.wear.2018.12.033.
  • Ozel, T.; Hsu, T.-K.; Zeren, E. Effects of Cutting Edge Geometry, Workpiece Hardness, Feed Rate and Cutting Speed on Surface Roughness and Forces in Finish Turning of Hardened AISI H13 Steel. Int. J. Adv. 2004, 25(3–4), 262–269. DOI: 10.1007/s00170-003-1878-5.
  • Salvi, S. B.; Deshmukh, R.; Deshmukh, S. D. Analysis of Surface Roughness in Hard Turning by Using Taguchi Method. Int. J. Eng. Sci. Technol.(IJEST). 2013, 5(2), 365–370.
  • Jafrey, D. D.; Panneerselvam, K. Study on Tensile Strength, Impact Strength and Analytical Model for Heat Generation in Friction Vibration Joining of Polymeric Nanocomposite Joints. PolymEngSci. 2016, 57(5), 495–504. DOI: 10.1002/pen.24443.
  • Krishnamoorthy, A.; Boopathy, S. R.; Palanikumar, K.; Davim, J. P. Application of Grey Fuzzy Logic for the Optimization of Drilling Parameters for CFRP Composites with Multiple Performance Characteristics. Measurement. 2012, 45(5), 1286–1296. DOI: 10.1016/j.measurement.2012.01.008.
  • Tzeng, C.-J.; Lin, Y.-H.; Yang, Y.-K.; Jeng, M.-C. Optimization of Turning Operations with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis. J. Mater. Process Tech. 2009, 209(6), 2753–2759. DOI: 10.1016/j.jmatprotec.2008.06.046.
  • Vignesh, S.; Iqbal, U. M.; Tigere, G. Optimization of End Milling Process of Oil Hardened Non-Shrinking Die Steel (OHNS) under Different Cutting Environment Using Taguchi and Response Surface Methodology (RSM) Approach. Adv. Mater. Process. Technol. 2018, 5(1), 78–94. DOI: 10.1080/2374068x.2018.1524256.
  • Johnson, R. D. J.; Wins, K. L. D.; Raj, A.; Beatrice, B. A. Optimization of Cutting Parameters and Fluid Application Parameters during Turning of OHNS Steel. Procedia Eng. 2014, 97, 172–177. DOI: 10.1016/j.proeng.2014.12.239.
  • Narayanan, N. S.; Baskar, N.; Ganesan, M. Multi Objective Optimization of Machining Parameters for Hard Turning OHNS/AISI H13 Material, Using Genetic Algorithm. Mater Today-Proc. 2018, 5(2), 6897–6905. DOI: 10.1016/j.matpr.2017.11.351.
  • Suresh, R.; Basavarajappa, S.; Samuel, G. Some Studies on Hard Turning of AISI 4340 Steel Using Multilayer Coated Carbide Tool. Measurement. 2012, 45(7), 1872–1884. DOI: 10.1016/j.measurement.2012.03.024.
  • Suresh, R.; Basavarajappa, S.; Gaitonde, V.; Samuel, G. Machinability Investigations on Hardened AISI 4340 Steel Using Coated Carbide Insert. Int. J. Refract. Met. H. 2012, 33, 75–86. DOI: 10.1016/j.ijrmhm.2012.02.019.
  • Palanisamy, A.; Selvaraj, T. Optimization of Machining Parameters for Dry Turning of Incoloy 800H Using Taguchi - Based Grey Relational Analysis. Mater Today-Proc. 2018, 5(2), 7708–7715. DOI: 10.1016/j.matpr.2017.11.447.
  • Palanisamy, D.; Senthil, P. Optimization on Turning Parameters of 15-5PH Stainless Steel Using Taguchi Based Grey Approach and Topsis. Arch. Mech. Eng. 2016, 63(3), 397–412. DOI: 10.1515/meceng-2016-0023.
  • Shnfir, M.; Olufayo, O. A.; Jomaa, W.; Songmene, V. Machinability Study of Hardened 1045 Steel When Milling with Ceramic Cutting Inserts. Mat. 2019, 12(23), 3974. DOI: 10.3390/ma12233974.
  • Ferreira, R.; Carou, D.; Lauro, C. H.; Davim, J. P. Surface Roughness Investigation in the Hard Turning of Steel Using Ceramic Tools. Mat Manufact. Process. 2016, 31(5), 648–652. DOI: 10.1080/10426914.2014.995051.
  • Masoudi, S.; Vafadar, A.; Hadad, M.; Jafarian, F. Experimental Investigation into the Effects of Nozzle Position, Workpiece Hardness, and Tool Type in MQL Turning of AISI 1045 Steel. Mat. Manufact. Process. 2018, 33(9), 1011–1019. DOI: 10.1080/10426914.2017.1401716.
  • Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Stagnation Zone during the Turning of Duplex SAF 2205 Stainless Steels Alloy. Mat. Manufact. Process. 2017, 32(13), 1486–1489. DOI: 10.1080/10426914.2017.1279289.
  • Selvam, M. D.; Senthil, P. Investigation on the Effect of Turning Operation on Surface Roughness of Hardened C45 Carbon Steel. Aust. J. Mech. Engg. 2016, 14(2), 131–137. DOI: 10.1080/14484846.2015.1093257.
  • Palanisamy, D.; Senthil, P. Machinability Study of Laser Surface Treated 15-5 PH Stainless Steel. Mat. Manufact. Process. 2016, 31(13), 1755–1762. DOI: 10.1080/10426914.2015.1103871.
  • Shihab, S. K.; Khan, Z. A.; Mohammad, A.; Siddiquee, A. N. A Review of Turning of Hard Steels Used in Bearing and Automotive Applications. Prod. Manufact. Res. 2014, 2(1), 24–49. DOI: 10.1080/21693277.2014.881728.
  • Pan, Z.; Feng, Y.; Ji, X.; Liang, S. Y. Turning Induced Residual Stress Prediction of AISI 4130 considering Dynamic Recrystallization. Mach. Sci. Tech. 2018, 22(3), 507–521. DOI: 10.1080/10910344.2017.1365900.
  • Sivaiah, P.; Chakradhar, D. Multi Performance Characteristics Optimization in Cryogenic Turning of 17-4 PH Stainless Steel Using Taguchi Coupled Grey Relational Analysis. Adv. Mat. Process.Tech. 2018, 4(3), 431–447. DOI: 10.1080/2374068X.2018.1452132.
  • Dureja, J. S.; Singh, R.; Bhatti, M. S. Optimizing Flank Wear and Surface Roughness during Hard Turning of AISI D3 Steel by Taguchi and RSM Methods. Prod. Manufact. Res. 2014, 2(1), 767–783. DOI: 10.1080/21693277.2014.955216.
  • Fratila, D.;. Numerical and Experimental Approach of Cutting Temperatures to Green Turning of 42CrMo4 Steel. Mat. Manufact. Process. 2016, 31(5), 657–666. DOI: 10.1080/10426914.2015.1004708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.