162
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation to study the effects of processing parameters on developed novel AM(Al-Mn) series alloy

&
Pages 1842-1851 | Received 18 Mar 2020, Accepted 05 Aug 2020, Published online: 11 Sep 2020

References

  • Haber, D. Lightweight Materials for Automotive Applications: A Review. 24th SAE BRASIL Int. Congr. Disp. Tech. Pap. Ser. 2015, 15–36. DOI: 10.4271/2015-36-0219.
  • Zhang, X.; Chen, Y.; Hu, J. Recent Advances in the Development of Aerospace Materials. Prog. Aerosp. Sci. 2018, 97, 22–34. DOI: 10.1016/j.paerosci.2018.01.001.
  • Monteiro, W. A.; Buso, S. J.; Silva, D. L. V. Application of Magnesium Alloys in Transport. IntechOpen. 2012, 1–16. DOI: 10.5772/48273.
  • Luo, A. A. Magnesium Casting Technology for Structural Applications. J. Magnesium Alloys. 2013, 1, 2–22. DOI: 10.1016/j.jma.2013.02.002.
  • Bettles, C. J.; Gibson, M. A. Current Wrought Magnesium Alloys: Strengths and Weaknesses. J. Miner. Met. & Mater. Soc. 2005, 57, 46–49. DOI: 10.1007/s11837-005-0095-0.
  • Gunde, P.; Hänzi, A. C.; Sologubenko, A. S.; Uggowitzer, P. J. High-strength Magnesium Alloys for Degradable Implant Applications. Mater. Sci. Eng. A. 2011, 528, 1047–1054. DOI: 10.1016/j.msea.2010.09.068.
  • Esmailya, M.; Svensson, J. E.; Fajardo, S.; Birbilis, N.; Frankel, G. S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L. G. Fundamentals and Advances in Magnesium Alloy Corrosion. Prog. Mater. Sci. 2017, 89, 92–193. DOI: 10.1016/j.pmatsci.2017.04.011.
  • Hou, J.; Zhou, W.; Zhao, N. Methods for Prevention of Ignition during Machining of Magnesium Alloys. Key Eng. Mater. 2010, 447-448, 150–154. DOI: 10.4028/www.scientific.net/KEM.447-448.150.
  • Czerwinski, F. Controlling the Ignition and Flammability of Magnesium for Aerospace Applications. Corros. Sci. 2014, 86, 1–16. DOI: 10.1016/j.corsci.2014.04.047.
  • Wang, Q.; Chen, W.; Ding, W.; Zhu, Y.; Mabuchi, M. Effect of Sb on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy. Metall. Mater. Trans. A. 2001, 32, 787–793. DOI: 10.1007/s11661-001-0094-x.
  • Lim, H. K.; Kim, D. H.; Lee, J. Y.; Kim, W. T.; Kim, D. H. Effects of Alloying Elements on Microstructures and Mechanical Properties of Wrought Mg–MM–Sn Alloy. J. Alloys Compd. 2009, 468, 308–314. DOI: 10.1016/j.jallcom.2007.12.098.
  • Gusieva, K.; Davies, C. H. J.; Scully, J. R.; Birbilis, N. Corrosion of Magnesium Alloys: The Role of Alloying. Int. Mater. Rev. 2015, 169–194. DOI: 10.1179/1743280414Y.0000000046.
  • Trang, T. T. T.; Zhang, J. H.; Kim, J. H.; Zargaran, A.; Hwang, J. H.; Suh, B. C.; Kim, N. J. Designing a Magnesium Alloy with High Strength and High Formability. Nat. Commun. 2018, 1-5. DOI: 10.1038/s41467-018-04981-4.
  • Jiang, Y.; Chen, D.; Chen, Z.; Liu, J. Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Mater. Manuf. Processes. 2010, 25, 837–841. DOI: 10.1080/10426910903496862.
  • Podosek, M. S.; Litynska, L. Effect of Yttrium on Structure and Mechanical Properties of Mg Alloys. Mater. Chem. Phys. 2003, 80, 472–475. DOI: 10.1016/S0254-0584(02)00549-7.
  • Sundman, B.; Kattner, U. R.; Sigli, C.; Stratmann, M.; Tellier, R. L.; Palumbo, M.; Fries, S. G. The Open Calphad Thermodynamic Software Interface. Comput. Mater. Sci. 2016, 125, 188–196. DOI: 10.1016/j.commatsci.2016.08.045.
  • Ozturk, K.; Zhong, Y.; Zi-K., L.; Luo, A. A. Creep Resistant Mg-Al-Ca Alloys: Computational Thermodynamics and Experimental Investigation. JOM. 2003, 55, 40–44. DOI: 10.1007/s11837-003-0208-6.
  • Kimberley, J.; Lamberson, L. E.; Mates, S. Dynamic Behavior of Materials. Proc. Annu. Conf Exp. Appl. Mech. 2017, 1, 46–48, Springer.
  • Kumar, A.; Kumar, S.; Mukhopadhyay, N. K. Introduction to Magnesium Alloy Processing Technology and Development of Low-cost Stir Casting Process for Magnesium Alloy and Its Composites. J. Magnesium Alloys. 2018, 6(3), 245–254. DOI: 10.1016/j.jma.2018.05.006.
  • Avedesian, M. M.; Baker, H. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM Int. OH, USA 1999. 22–23. ISBN: 978-0-87170-657-7
  • Agarwal, M.; Srivastava, R. Influence of Solid Fraction Casting on Microstructure of Aluminum Alloy 6061. Mater. Manuf. Processes. 2016, 31(15), 1958–1967. DOI: 10.1080/10426914.2015.1127956.
  • Vishnu, P. K.; Jayadevan, K. R. Simulation of Stirring in Stir Casting. Procedia Technol. 2016, 24, 356–363. DOI: 10.1016/j.protcy.2016.05.048.
  • Harnby, N.; Edwards, M. F.; Neinow, A. W. Introduction to Mixing Problems. Mixing in the Process Industries, 1st; Butterworth Heinemann: England, U.K., 1997; pp 106–107. ISBN: 978-0-7506-3760-2.
  • Ravi, K. R.; Sreekumar, V. M.; Pillai, R. M.; Mahato, C.; Amaranathan, K. R.; Kumar, R. A.; Pai, B. C. Optimization of Mixing Parameters through a Water Model for Metal Matrix Composites Synthesis. Mater. Des. 2007, 28(3), 871–881. DOI: 10.1016/j.matdes.2005.10.007.
  • Singh, R.; Podder, D.; Singh, S. Effect of Single, Double and Triple Particle Size SiC and Al2O3 Reinforcement on Wear Properties of AMC Prepared by Stir Casting in Vacuum Mould. Trans. Indian Inst. Met. 2015, 68, 791–797. DOI: 10.1007/s12666-015-0512-1.
  • Jahangiri, A.; Marashi, S. P. H.; Mohammadaliha, M.; Ashofte, V. The Effect of Pressure and Pouring Temperature on the Porosity, Microstructure, Hardness and Yield Stress of AA2024 Aluminum Alloy during the Squeeze Casting Process. J. Mater. Proc. Technol. 2017, 245, 1–6. DOI: 10.1016/j.jmatprotec.2017.02.005.
  • Sarizam, M.; Komizo, Y. Effects of Holding Temperature on Bainite Transformation in Cr-Mo Steel. Mech. Eng. Sci. 2014, 7, 1103–1114. DOI: 10.15282/jmes.7.2014.9.0107.
  • Hou, Z. Y.; Wu, D.; Zheng, S. X.; Yang, X. L.; Li, Z.; Xu, Y. B. Effect of Holding Temperature on Microstructure and Mechanical Properties of High-Strength Multiphase Steel. Steel Res. Int. 2015, 86, 1–10. DOI: 10.1002/srin.201500331.
  • Fan, C. H.; Chen, Z. H.; He, W. Q.; Chen, J. H.; Chen, D. Effects of the Casting Temperature on Microstructure and Mechanical Properties of the Squeeze-cast Al–Zn–Mg–Cu Alloy. J. Alloys Compd. 2010, 504(2), 42–45. DOI: 10.1016/j.jallcom.2010.06.012.
  • Moosbrugger, C. Introduction to Magnesium Alloys, Chapter I: Engineering Properties of Magnesium Alloys. ASM Int. 2017, 2-6, 2–5. EISBN: 978-1-62708-144-3.
  • Song, G. L.; Atrens, A. Corrosion Mechanisms of Magnesium Alloys. J. Adv. Eng. Mater. 1999, 1(1), 1–23. DOI: 10.1002/(SICI)1527-2648(199909)1.
  • De Graef, M.; McHenry, M. E. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, 2nd, ISBN: 978-1107005877; Cambridge University Press: New York, U.S.A., 2012. 493–494.
  • Arora, H. S.; Ayyagari, A.; Saini, J.; Selvam, K.; Riyadh, S.; Pole, M.; Grewal, H. S.; Mukherjee, S. High Tensile Ductility and Strength in Dual-phase Bimodal Steel through Stationary Friction Stir Processing. Sci. Rep. 2019, 9, 1–6. DOI: 10.1038/s41598-019-38707-3.
  • El-Sherbiny, M.; Hegazy, R.; Ibrahim, M.; Abuelezz, A. The Influence of Geometrical Tolerances of Vickers Indenter on the Accuracy of Measured Hardness. Int. J. Metrol. Qual. Eng. 2012, 3, 1–6. DOI: 10.1051/ijmqe/2012009.
  • Leo, D. G. P.; Regener, D. Quantitative Characterization of Mg17Al12 Phase and Grain Size in HPDC AZ91 Magnesium Alloy. J. Alloys Compd. 2008, 461, 139–146. DOI: 10.1016/j.jallcom.2007.07.017.
  • Cao, P.; Qian, M.; StJohn, D. H. Effect of Manganese on Grain Refinement of Mg–Al Based Alloys. Scr. Mater. 2006, 54, 1853–1858. DOI: 10.1016/j.scriptamat.2006.02.020.
  • Lü, Y. Z.; Wang, Q. D.; Zeng, X. Q.; Ding, W. J.; Zhu, Y. P. Effects of Silicon on Microstructure, Fluidity, Mechanical Properties, and Fracture Behavior of Mg–6Al Alloy. Mater. Sci. Technol. 2001, 17, 207–214. DOI: 10.1179/026708301101509872.
  • Varin, R. A. Intermetallics: Crystal Structures. Encyclopedia Mater: Sci. Technol. 2001, 4177–4180, 2nd Ed. DOI: 10.1016/B0-08-043152-6/00734-8.
  • Cai, S.; Lei, T.; Li, N.; Feng, F. Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg–Zn Alloys. Mater. Sci. And Eng. 2014, 32, 2570–2577. DOI: 10.1016/j.msec.2012.07.042.
  • Ignaszak, Z.; Hajkowski, J. Contribution to the Identification of Porosity Type in AlSiCu High-Pressure-Die-Castings by Experimental and Virtual Way. Arch. Foundry Eng. 2015, 15(1), 143–151. DOI: 10.1515/afe-2015-0026.
  • Kubo, K.; Pehlke, R. D. Mathematical Modeling of Porosity Formation in Solidification. Metall. Trans. B. 1985, 16, 359–366. DOI: 10.1007/BF02679728.
  • Lu, Y. Z.; Wang, Q. D.; Ding, W. J.; Zeng, X. Q.; Zhu, Y. P. Fracture Behavior of AZ91 Magnesium Alloy. Mater. Lett. 2000, 44, 265–268. DOI: 10.1016/S0167-577X(00)00041-0.
  • Ma, Y.; Jin., Z.; Yang, M. Research on Microstructure and Alloy Phases of AM50 Magnesium Alloy. J. Alloys Compd. 2009, 470, 515–521. DOI: 10.1016/j.jallcom.2008.03.047.
  • Dai, W.; Wu, S.; Lü, S.; Lin, C. Effects of Rheo-squeeze Casting Parameters on Microstructure and Mechanical Properties of AlCuMnTi Alloy. Mater. Sci. Eng. A. 2012, 538, 320–326. DOI: 10.1016/j.msea.2012.01.051.
  • Yuan, W.; Panigrahi, S. K.; Su, J. Q.; Mishra, R. S. Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy. Scr. Mater. 2011, 65(11), 994–997. DOI: 10.1016/j.scriptamat.2011.08.028.
  • Stoloff, N. S. Intermetallics: Mechanical Properties. Encyclopedia Mater: Sci. Technol. 2001, 4213–4225, 2nd Ed. DOI: 10.1016/B0-08-043152-6/00740-3.
  • Padmavathi, D. A. Potential Energy Curves & Material Properties. Mater. Sci. Appl. 2011, 2, 97–104. DOI: 10.4236/msa.2011.22013.
  • Yigezu, B. S.; Jha, P. K.; Mahapatra, M. M. The Key Attributes of Synthesizing Ceramic Particulate Reinforced Al-Based Matrix Composites through Stir Casting Process: A Review. Mater. Manuf. Processes. 2013, 28, 969–979. DOI: 10.1080/10426914.2012.677909.
  • Hamdan, A. A. Effect of the Holding Temperature on the Solidification Processing of Cast Al–Mg–Al2O3 Composites. Mater. Manuf. Processes. 2002, 17, 843–854. DOI: 10.1081/AMP-120016061.
  • Thangapandian, N.; Prabu, B. S.; Padmanabhan, K. A. Effect of Temperature on Grain Size in AA6063 Aluminum Alloy Subjected to Repetitive Corrugation and Straightening. Acta. Metall. Sinica. 2019, 32, 835–844. DOI: 10.1007/s40195-018-0866-6.
  • Balducci, E.; Ceschini, L.; Messieri, S.; Wenner, S.; Holmestad, R. Effects of Overaging on Microstructure and Tensile Properties of the 2055 AlCu-Li-Ag Alloy. Mater. Sci. Eng. A. 2017, 707, 221–231. DOI: 10.1016/j.msea.2017.09.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.