482
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Mo-doping LiFePO4/C by carbon reduction method

, &
Pages 419-425 | Received 27 May 2020, Accepted 10 Oct 2020, Published online: 09 Nov 2020

References

  • Talebi-Esfandarani, M.; Savadogo, O. Enhancement of Electrochemical Properties of Platinum Doped LiFePO4/C Cathode Material Synthesized Using Hydrothermal Method. Solid. State. Ionics. 2014, 261, 81–86. Doi:10.1016/j.ssi.2014.03.028.
  • Mi, Y. Y.; Yang, C. K.; Zuo, C. H.; Qi, L. Y.; Tang, C. X.; Zhang, W. D.; Zhou, H. H. Positive Effect of Minor Manganese Doping on the Electrochemical Performance of LiFePO4/C under Extreme Conditions. Electrochim. Acta. 2015, 176, 642–648. DOI: 10.1016/j.electacta.2015.07.060.
  • Zhao, N. N.; Li, Y. S.; Zhi, X. K.; Wang, L.; Zhao, X. X.; Wang, Y. M.; Liang, G. C. Effect of Ce3+ Doping on the Properties of LiFePO4 Cathode Material. J. Rare. Earth. 2016, 34(2), 174–180. DOI: 10.1016/S1002-0721(16)60011-X.
  • Yin, X. G.; Huang, K. L.; Liu, S. Q.; Wang, H. Y.; Wang, H. Preparation and Characterization of Na-doped LiFePO4/C Composites as Cathode Materials for Lithium-ion Batteries. J. Power. Sources. 2010, 195(13), 4308–4312. DOI: 10.1016/j.jpowsour.2010.01.019.
  • Chen, M. H.; Kou, K. H.; Du, X. W. Conducting Reduced Graphene Oxide Wrapped LiFePO4/C Nanocrystal as Cathode Material for High-rate Lithium Secondary Batteries. Solid. State. Ionics. 2017, 310, 95–99. Doi:10.1016/j.ssi.2017.08.010.
  • Yang, Z. H.; Xia, J. F.; Zhi, L. H.; Zhang, W. X.; Pei, B. An Improved Solid-state Reaction Route to Mg2+-doped LiFePO4/C Cathode Material for Li-ion Battery. Ionics. 2014, 20(2), 169–174. DOI: 10.1007/s11581-013-0974-2.
  • Tao, Y.; Cao, Y. B.; Hu, G. R.; Chen, P. W.; Peng, Z. D.; Du, K.; Jia, M.; Huang, Y.; Xia, J.; Li, L. Y.; et al. Effects of Vanadium Oxide Coating on the Performance of LiFePO4/C Cathode for Lithium-ion Batteries. J. Solid. State. Electr. 2019, 23(6), 2243–2250. DOI: 10.1007/s10008-019-04319-0.
  • Yang, W. Y.; Chen, Y.; Peng, X. H.; Lin, Y. B.; Li, J. X.; Hong, Z. S.; Xu, G. G.; Huang, Z. G. Enhanced Electrochemical Performances of Cu/CuxO-Composite Decorated LiFePO4 through a Facile Magnetron Sputtering. ACS. Appl. Energy. Mater. 2019, 2(7), 4652–4663. DOI: 10.1021/acsaem.9b00004.
  • Zhao, N. N.; Li, Y. S.; Zhao, X. X.; Zhi, X. K.; Liang, G. C. Effect of Particle Size and Purity on the Low Temperature Electrochemical Performance of LiFePO4/C Cathode Material. J. Alloy. Compd. 2016, 683, 123–132. DOI: 10.1016/j.jallcom.2016.04.070.
  • Wang, X. F.; Feng, Z. J.; Huang, J. T.; Deng, W.; Li, X. B.; Zhang, H. S.; Wen, Z. H. Graphene-decorated Carbon-coated LiFePO4 Nanospheres as a High-performance Cathode Material for Lithium-ion Batteries. Carbon. 2018, 127, 149–157. DOI: 10.1016/j.carbon.2017.10.101.
  • Lu, J. J.; Li, W. L.; Shen, C.; Tang, D. M.; Dai, L. X.; Diao, G. W.; Chen, M. Nano-scale Hollow Structure Carbon-coated LiFePO4 as Cathode Material for Lithium Ion Battery. Ionics. 2019. DOI: 10.1007/s11581-019-02978-7.
  • Mo, Y. D.; Liu, J. C.; Meng, C.; Xiao, M.; Ren, S.; Sun, L. Y.; Wang, S. J.; Meng, Y. Z. Stable and Ultrafast Lithium Storage for LiFePO4/C Nanocomposites Enabled by Instantaneously Carbonized Acetylenic Carbon-rich Polymer. Carbon. 2019, 147, 19–26. DOI: 10.1016/j.carbon.2019.02.049.
  • Yang, C. C.; Jang, J. H.; Jiang, J. R. Study of Electrochemical Performances of Lithium Titanium Oxide-coated LiFePO4/C Cathode Composite at Low and High Temperatures. Appl. Energ. 2016, 162, 1419–1427. Doi:10.1016/j.apenergy.2015.01.131.
  • Chen, Z. Y.; Zhang, Z.; Zhao, Q. F.; Duan, J. F.; Zhu, H. L. Understanding the Impact of K-Doping on the Structure and Performance of LiFePO4/C Cathode Materials. J. Nanosci. Nanotechnol. 2019, 19(1), 119–124. DOI: 10.1166/jnn.2019.16449.
  • Gao, H. Y.; Jiao, L. F.; Peng, W. X.; Liu, G.; Yang, J. Q.; Zhao, Q. Q.; Qi, Z.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Enhanced Electrochemical Performance of LiFePO4/C via Mo-doping at Fe Site. Electrochim. Acta. 2011, 56(27), 9961–9967. DOI: 10.1016/j.electacta.2011.08.086.
  • Trocoli, R.; Franger, S.; Cruz, M.; Morales, J.; Santos-Pena, J. Improving the Electrochemical Properties of Nanosized LiFePO4-based Electrode by Boron Doping. Electrochim. Acta. 2014, 135, 558–567. DOI: 10.1016/j.electacta.2014.04.187.
  • Zhang, B. F.; Xu, Y. L.; Wang, J.; Lin, J.; Wang, C.; Chen, Y. J. Lanthanum and Cerium Co-doped LiFePO4: Morphology, Electrochemical Performance and Kinetic Study from −30 – + 50 C. Electrochim. Acta. 2019, 322, 134686. DOI: 10.1016/j.electacta.2019.134686.
  • Meng, Y. S.; Li, Y. Z.; Xia, J.; Hu, Q. R.; Ke, X. Y.; Ren, G. F.; Zhu, F. L. F-doped LiFePO4@N/B/F-doped Carbon as High Performance Cathode Materials for Li-ion Batteries. Appl. Surf. Sci. 2019, 476, 761–768. DOI: 10.1016/j.apsusc.2019.01.139.
  • Liu, H.; Luo, S. H.; Yan, S. X.; Wang, Y. F.; Wang, Q.; Li, M. Q.; Zhang, Y. H. A Novel and Low-cost Iron Source for Synthesizing Cl-doped LiFePO4/C Cathode Materials for Lithium-ion Batteries. Electroanal. Chem. 2019, 850, 113434. Doi:10.1016/j.jelechem.2019.113434.
  • Wu, Y. N.; Zhou, L.; Xue, G. Q.; Huang, J.; Fang, X.; Wang, Y.; Jin, Y.; Tang, X. C. Preparation of High Tap Density LiFePO4/C through Carbothermal Reduction Process Using Beta-Cyclodextrin as Carbon Source. Int. J. Electrochem. Sc. 2018, 13, 2958–2968. Doi:10.20964/2018.03.66.
  • Shao, Z. C.; Xia, J. L.; Liu, X. Q.; Li, G. Y. Synthesis Process and Properties of V5+ -doped LiFePO4/C. Matre. Manuf. Process. 2015, 31(6), 150608143338005.
  • Chen, L. J.; Feng, W. J.; Su, W. X.; Li, M. M.; Song, C. K. Biosynthesis of LiFePO4/C Cathode Materials by a Sol-gel Route for Use in Lithium Ion Batteries. Int. J. Electrochem. Sc. 2019, 14, 2846–2856. Doi:10.20964/2019.03.21.
  • Xu, Y.; Zhao, M. S.; Sun, B. Doping Supervalent Rare Earth Ion in LiFePO4/C through Hydrothermal Method. Solid. State. Ionics. 2016, 291, 14–19. Doi:10.1016/j.ssi.2016.04.008.
  • Liu, H. C.; Wang, Y. M.; Hsieh, C. C. Optimized Synthesis of Cu-doped LiFePO4/C Cathode Material by an Ethylene Glycol Assisted Co-precipitation Method. Ceram. Int. 2017, 43(3), 3196–3201. DOI: 10.1016/j.ceramint.2016.11.144.
  • Ma, Z. P.; Shao, G. J.; Wang, G. L.; Du, J. P.; Zhang, Y. Electrochemical Performance of Mo-doped LiFePO4/C Composites Prepared by Two-step Solid-state Reaction. Ionics. 2013, 19(3), 437–443. DOI: 10.1007/s11581-012-0768-y.
  • Wu, Y. J.; Gu., Y. J.; Chen, Y. B.; Liu, H. Q.; Liu, C. Q. Effect of Lithium Phosphate on the Structural and Electrochemical Performance of Nanocrystalline LiFePO4 Cathode Material with Iron Defects. Int. J. Hydrogen. Energ. 2018, 43(4), 2050–2056. DOI: 10.1016/j.ijhydene.2017.12.061.
  • Wu, K. P.; Du, K.; Hu, G. R. Red-blood-cell-like (Nh4)[fe2(oh)(po4)2]·2h2o Particles: Fabrication and Application in High-performance LiFePO4 Cathode Materials. J. Mater. Chem. A. 2018, 6, 1057–1066. DOI: 10.1039/C7TA08413G.
  • Li, X. T.; Shao, Z. B.; Liu, K. R.; Zhao, Q.; Liu, G. F.; Xu, B. S. Enhancement of Nb-doping on the Properties of LiFePO4/C Prepared via a High-temperature Ball Milling–based Method. J. Solid. State. Electr. 2019, 23(2), 465–473. DOI: 10.1007/s10008-018-4152-3.
  • Sun, C. S.; Zhang, Y.; Zhang, X. J.; Zhou, Z. Structural and Electrochemical Properties of Cl-doped LiFePO4/C. J. Power. Sources. 2010, 195(11), 3680–3683. DOI: 10.1016/j.jpowsour.2009.12.074.
  • Guan, X. M.; Li, G. J.; Li, C. Y.; Ren, R. M. Synthesis of Porous Nano/micro Structured LiFePO4/C Cathode Materials for Lithium-ion Batteries by Spray-drying Method. T. Nonferr. Metal. Soc. 2017, 27(1), 141–147. DOI: 10.1016/S1003-6326(17)60016-5.
  • Liu, W. M.; Liu, Q. L.; Qin, M. L.; Xv, L.; Deng, J. Y. Inexpensive and Green Synthesis of Multi-doped LiFePO4/C Composites for Lithium-ion Batteries. Electrochim. Acta. 2017, 257, 82–88. DOI: 10.1016/j.electacta.2017.10.073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.