265
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Development of novel high-shear and low-pressure grinding tool with flexible composite

, , , &
Pages 479-487 | Received 02 Apr 2020, Accepted 12 Oct 2020, Published online: 09 Nov 2020

References

  • Hua, Y.; Liu, Z.-Q. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-based Superalloy Inconel 718. Materials. 2018, 11(6), 879–893. DOI: 10.3390/ma11060879.
  • Feng, G.; Liu, Q.-Z.; Guo, W.-L.; Xin, Y.-P.; Liang, Q.-L. Experimental Investigations on Nanogrinding of RB-SiC Wafers. Mater. Manuf. Processes. 2018, 33(9), 1030–1035. DOI: 10.1080/10426914.2018.1424906.
  • Zou, L.; Huang, Y.; Zhang, G.-J.; Cui, X.-P. Feasibility Study of a Flexible Grinding Method for Precision Machining of the TiAl-based Alloy. Mater. Manuf. Processes. 2019, 34(10), 1160–1168. DOI: 10.1080/10426914.2019.1628255.
  • Li, C.; Li, X.-L.; Wu, Y.-Q.; Zhang, F.-H.; Huang, H. Deformation Mechanism and Force Modelling of the Grinding of YAG Single Crystals. Int. J. Mach. Tools. Manuf. 2019, 143, 23–37. DOI: 10.1016/j.ijmachtools.2019.05.003.
  • Mukhopadhyay, M.; Kundu, P. K.; Das, S. Experimental Investigation on Enhancing Grindability Using Alkaline-based Fluid for Grinding Ti-6Al-4V. Mater. Manuf. Processes. 2018, 33(16), 1775–1781. DOI: 10.1080/10426914.2018.147675.
  • Venkatesan, K.; Ramanujam, R.; Kuppan, P. Laser Assisted Machining of Difficult to Cut Materials: Research Opportunities and Future Directions - A Comprehensive Review. Procedia. Eng. 2014, 97, 1626–1636. DOI: 10.1016/j.proeng.2014.12.313.
  • Tian, Y.-B.; Liu, F.; Wang, Y.; Wu, H. Development of Portable Power Monitoring System and Grinding Analytical Tool. J. Manuf. Process. 2017, 27, 188–197. DOI: 10.1016/j.jmapro.2017.05.002.
  • Fang, C.-F.; Yan, Z.; Deng, -W.-W.; Zhang, L.-C. Material Removal in Grinding Sapphire Wafers with Brazed–diamond Pellet Plates. Mater. Manuf. Processes. 2019, 34(7), 791–799. DOI: 10.1080/10426914.2019.1594260.
  • Teicher, U.; Künanz, K.; Ghosh, A.; Chattopadhyay, A. B. Performance of Diamond and CBN Single-layered Grinding Wheels in Grinding Titanium. Mater. Manuf. Processes. 2008, 23(3), 224–227. DOI: 10.1080/10426910701860541.
  • Li, H.-N.; Axinte, D. Textured Grinding Wheels: A Review. Int. J. Mach. Tools. Manuf. 2016, 109, 8–35. DOI: 10.1016/j.ijmachtools.2016.07.001.
  • Aurich, J. C.; Kirsch, B. Improved Coolant Supply through Slotted Grinding Wheel. CIRP. Annals Manuf. Technol. 2013, 62(1), 363–366. DOI: 10.1016/j.cirp.2013.03.071.
  • Zhang, G.-F.; Zhang, B.; Deng, Z.-H.; Tan, Y.-Q. An Experimental Study on a Novel Diamond Whisker Wheel. CIRP. Annals Manuf. Technol. 2010, 59(1), 355–360. DOI: 10.1016/j.cirp.2010.03.116.
  • Chen, -Z.-Z.; Xu, J.-H.; Ding, W.-F.; Ma, C.-Y.; Fu, Y.-C. Grinding Temperature during High-efficiency Grinding Inconel718 Using Porous CBN Wheel with Multilayer Defined Grain Distribution. Int. J. Adv. Manuf. Technol. 2015, 77(1–4), 165–172. DOI: 10.1007/s00170-014-6403-5.
  • Yu, H.-Y.; Lyu, Y.-S.; Wang, J.; Wang, X.-Z. A Biomimetic Engineered Grinding Wheel Inspired by Phyllotaxis Theory. J. Mater. Process. Tech. 2017, 251, 267–281. DOI: 10.1016/j.jmatprotec.2017.08.041.
  • Yamaguchi, K.; Wei, Y.-Q.; Horaguchi, I. Development of Diamond-like Carbon Fibre Wheel. Precis. Eng. 2004, 28(4), 419–425. DOI: 10.1016/S0141-6359(04)00044-3.
  • Nagdeve, L.; Dhakar, K.; Kumar, H. Development of Novel Finishing Tool into Magnetic Abrasive Finishing Process of Aluminum 6061. Mater. Manuf. Processes. 2020, 35(10), 1129–1134. DOI: 10.1080/10426914.2020.1767295.
  • Zou, L.; Li, H.; Yang, Y.-G.; Huang, Y. Feasibility Study of Minimum Quantity Lubrication Assisted Belt Grinding of Titanium Alloys. Mater. Manuf. Processes. 2020, 35(9), 961–968. DOI: 10.1080/10426914.2020.1747625.
  • Perná, I.; Hanzliček, T.; Boura, P.; Lučaník, A. The Manufacture of the Grinding Wheels Based on the Ca-K Geopolymer Matrix. Mater. Manuf. Processes. 2016, 31(5), 667–672. DOI: 10.1080/10426914.2015.1004709.
  • Kizaki, T.; Hao, Y.; Ohashi, T.; Kokubo, T.; Nishijima, T. Capability of a Grinding Wheel Reinforced in Hoop Direction with Carbon Fiber. CIRP. Annals Manuf. Technol. 2020, 69(1), 285–288. DOI: 10.1016/j.cirp.2020.04.105.
  • Tian, Y.-B.; Li, L.-G.; Liu, B.; Han, J.-G.; Fan, Z.-H. Experimental Investigation on High-shear and Low-pressure Grinding Process for Inconel718 Superalloy. Int. J. Adv. Manuf. Technol. 2020, 107(7–8), 3425–3435. DOI: 10.1007/s00170-020-05284-z.
  • Srivastava, A.; Majumdar, A.; Butola, B. S. Improving the Impact Resistance of Textile Structures by Using Shear Thickening Fluids: A Review. Crit. Rev. Solid. State. Mater. Sci. 2012, 37(2), 115–129. DOI: 10.1080/10408436.2011.613493.
  • He, Q.-Y.; Cao, -S.-S.; Wang, Y.-P.; Xuan, S.-H.; Wang, P.-F.; Gong, X.-L. Impact Resistance of Shear Thickening fluid/Kevlar Composite Treated with Shear-stiffening Gel. Compos. Part A: Appl. Sci. Manuf. 2018, 106, 82–90. DOI: 10.1016/j.compositesa.2017.12.019.
  • Bossis, G.; Brady, J. F. The Rheology of Brownian Suspensions. J. Chem. Phys. 1989, 91(3), 1866–1874. DOI: 10.1063/1.457091.
  • Li, M.; Lyu, B.-H.; Yuan, J.-L.; Dong, -C.-C.; Dai, W.-T. Shear-thickening Polishing Method. Int. J. Mach. Tools. Manuf. 2015, 94, 88–99. DOI: 10.1016/j.ijmachtools.2015.04.010.
  • Fan, Z.-H.; Tian, Y.-B.; Zhou, Q.; Shi, C. A Magnetic Shear Thickening Media in Magnetic Field–assisted Surface Finishing. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2020, 234(6–7), 1069–1072. DOI: 10.1177/0954405419896119.
  • Metzner, A. B.;. Flow Behavior of Concentrated (Dilatant) Suspensions. J. Rheol. 1958, 2(1), 239–254. DOI: 10.1122/1.548831.
  • Wang, Y.; The Preparation and Performance of Shear Thickening Fluid (STF) and STF/Kevlar Composites. M.S. Dissertation, Beijing Institute of Technology, Beijing, CHN, 2015.
  • Gürgen, S.; Li, W.-H.; Kushan, M. C. The Rheology of Shear Thickening Fluids with Various Ceramic Particle Additives. Mater. Design. 2016, 104, 312–319. DOI: 10.1016/j.matdes.2016.05.055.
  • Chen, M.; Sun, F.-H.; Lee, Y.-M.; Yang, S.-H. Surface Quality Studies with respect to Grinding Burn of New Typical Nickel-based Superalloy. Key Eng. Mater. 2004, 259-260, 233–238. DOI: 10.4028/www.scientific.net/KEM.259-260.233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.