364
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Variable-parameter NiTi ultrasonic spot welding with Cu interlayer

, ORCID Icon, , , &
Pages 599-607 | Received 28 Jun 2020, Accepted 05 Oct 2020, Published online: 18 Dec 2020

References

  • Oliveira, J. P.; Miranda, R. M.; Braz Fernandes, F. M. Welding and Joining of NiTi Shape Memory Alloys: A Review. Prog. Mater. Sci. 2017, 88, 412–466. DOI: 10.1016/j.pmatsci.2017.04.008.
  • Birnbaum, A. J.; Yao, Y. L. The Effects of Laser Forming on NiTi Superelastic Shape Memory Alloys. ASME J. Manuf. Sci. Eng. 2010, 132(4), 041002. DOI: 10.1115/1.4000309.
  • Melly, S. K.; Liu, L. W.; Liu, Y. J.; Leng, J. S. Active Composites Based on Shape Memory Polymers: Overview, Fabrication Methods, Applications, and Future Prospects. J. Mater. Sci. 2020, 55(25), 10975–11051. DOI: 10.1007/s10853-020-04761-w.
  • Zeng, Z.; Cong, B. Q.; Oliveira, J. P.; Ke, W. C.; Schell, N.; Peng, B.; Qi, Z. W.; Ge, F. G.; Zhang, W.; Ao, S. S. Wire and Arc Additive Manufacturing of a Ni-rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties. Addit. Manuf. 2020, 32, 101051. DOI: 10.1016/j.addma.2020.101051.
  • Andani, M. T.; Saedi, S.; Turabi, A. S.; Karamooz, M. R.; Haberland, C.; Karaca, H. E.; Elahinia, M. Mechanical and Shape Memory Properties of Porous Ni50.1Ti49.9 Alloys Manufactured by Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2017, 68, 224–231. DOI: 10.1016/j.jmbbm.2017.01.047.
  • Ao, S. S.; Li, K. B.; Liu, W. D.; Qin, X. Y.; Wang, T.; Dai, Y.; Luo, Z. Electrochemical Micromachining of NiTi Shape Memory Alloy with Ethylene glycol–NaCl Electrolyte Containing Ethanol. J. Manuf. Process. 2020, 53, 223–228. DOI: 10.1016/j.jmapro.2020.02.019.
  • Zeng, Z.; Yang, M.; Oliveira, J. P.; Song, D.; Peng, B. Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-functional Design Applications. Smart Mater. Struct. 2016, 25(8), 085001. DOI: 10.1088/0964-1726/25/8/085001.
  • Tam, B.; Khan, M. I.; Zhou, Y. Mechanical and Functional Properties of Laser-welded Ti-55.8 Wt Pct Ni Nitinol Wires. Metall. Mater. Trans. A. 2011, 42(8), 2166–2175. DOI: 10.1007/s11661-011-0639-6.
  • Shamsolhodaei, A.; Sun, Q.; Wang, X.; Panton, B.; Di, H.; Zhou, Y. N. Effect of Laser Positioning on the Microstructure and Properties of NiTi-copper Dissimilar Laser Welds. J. Mater. Eng. Perform. 2020, 29(2), 849–857. DOI: 10.1007/s11665-020-04637-9.
  • Mehrpouya, M.; Gisario, A.; Barletta, M.; Natali, S.; Veniali, F. Dissimilar Laser Welding of NiTi Wires. Lasers Manuf. Mater. Process. 2019, 6, 99–112. DOI: 10.1007/s40516-019-00084-0.
  • Watanabe, T.; Itoh, H.; Yanagisawa, A.; Hiraishi, M. Ultrasonic Welding of Heat Treatable Aluminum Alloy A6061 Sheet. Weld. Int. 2009, 23(9), 633–639. DOI: 10.1080/09507110902842802.
  • Rubino, F.; Parmar, H.; Esperto, V.; Carlone, P. Ultrasonic Welding of Magnesium Alloys: A Review. Mater. Manuf. Process. 2020, 35(10), 1051–1068. DOI: 10.1080/10426914.2020.1758330.
  • Li, M. F.; Zhu, Z. Q.; Xiao, Q. K.; Zhang, Y. F. Mechanical Properties and Microstructure Evolution of Dissimilar Mg and Al Alloys Welded Using Ultrasonic Spot Welding. Mater. Res. Express. 2019, 6(8), 086588. DOI: 10.1088/2053-1591/ab2010.
  • Luo, Y.; Chung, H.; Cai, W.; Rinker, T.; Hu, S. J.; Kannatey-Asibu, E.; Abell, J. Joint Formation in Multilayered Ultrasonic Welding of Ni-coated Cu and the Effect of Preheating. ASME J. Manuf. Sci. Eng. 2018, 140(11), 111003. DOI: 10.1115/1.4040878.
  • Feng, M. N.; Chen, Y.; Fu, D. H.; Qu, C.; Luo, Z. Fatigue Behaviour and Life Estimation of Mg/Al Ultrasonic Spot Weld Bonding Welds. Sci. Technol. Weld. Join. 2018, 23(6), 487–500. DOI: 10.1080/13621718.2017.1417782.
  • Zhang, W.; Ao, S. S.; Oliveira, J. P.; Zeng, Z.; Luo, Z.; Hao, Z. Z. Effect of Ultrasonic Spot Welding on the Mechanical Behaviour of NiTi Shape Memory Alloys. Smart Mater. Struct. 2018, 27(8), 085020. DOI: 10.1088/1361-665X/aacfeb.
  • Oliveira, J. P.; Panton, B.; Zeng, Z.; Andrei, C. M.; Zhou, Y.; Miranda, R. M.; Braz Fernandes, F.-M. Laser Joining of NiTi to Ti6Al4V Using a Niobium Interlayer. Acta Mater. 2016, 105, 9–15. DOI: 10.1016/j.actamat.2015.12.021.
  • Zeng, Z.; Panton, B.; Oliveira, J. P.; Han, A.; Zhou, Y. N. Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper. Smart Mater. Struct. 2015, 24, 125036. DOI: 10.1088/0964-1726/24/12/125036.
  • Bricknell, R. H.; Melton, K. N.; Mercier, O. The Structure of NiTiCu Shape Memory Alloys. Metall. Trans. A. 1979, 10, 693–697. DOI: 10.1007/BF02658390.
  • Gugel, H.; Schuermann, A.; Theisen, W. Laser Welding of NiTi Wires. Mater. Sci. Eng. A. 2008, 481–482, 668–671. DOI: 10.1016/j.msea.2006.11.179.
  • Li, H. M.; Sun, D. Q.; Gu, X. Y.; Dong, P.; Lv, Z. P. Effects of the Thickness of Cu Filler Metal on the Microstructure and Properties of Laser-welded TiNi Alloy and Stainless Steel Joint. Mater. Des. 2013, 50, 342–350. DOI: 10.1016/j.matdes.2013.03.014.
  • Shojaei Zoeram, A.; Akbari Mousavi, S. A. A. Effect of Interlayer Thickness on Microstructure and Mechanical Properties of as Welded Ti6Al4V/Cu/NiTi Joints. Mater. Lett. 2014, 133, 5–8. DOI: 10.1016/j.matlet.2014.06.141.
  • Zhang, W.; Ao, S. S.; Oliveira, J. P.; Zeng, Z.; Huang, Y. F.; Luo, Z. Microstructural Characterization and Mechanical Behavior of NiTi Shape Memory Alloys Ultrasonic Joints Using Cu Interlayer. Materials. 2018, 11(10), 1830. DOI: 10.3390/ma11101830.
  • Zhang, W.; Ao, S. S.; Oliveira, J. P.; Li, C. J.; Zeng, Z.; Wang, A. Q.; Luo, Z. On the Metallurgical Joining Mechanism during Ultrasonic Spot Welding of NiTi Using a Cu Interlayer. Scr. Mater. 2020, 178, 414–417. DOI: 10.1016/j.scriptamat.2019.12.012.
  • Hall, E. O. Variation of Hardness of Metals with Grain Size. Nature. 1954, 173(4411), 948–949. DOI: 10.1038/173948b0.
  • Das, S.; Satpathy, M. P.; Pattanaik, A.; Routara, B. C. Experimental Investigation on Ultrasonic Spot Welding of Aluminum-cupronickel Sheets under Different Parametric Conditions. Mater. Manuf. Process. 2019, 34(15), 1689–1700. DOI: 10.1080/10426914.2019.1689265.
  • Ni, Z. L.; Ye, F. X. Effect of Lap Configuration on the Microstructure and Mechanical Properties of Dissimilar Ultrasonic Metal Welded Copper-aluminum Joints. J. Mater. Process. Technol. 2017, 245, 180–192. DOI: 10.1016/j.jmatprotec.2017.02.027.
  • De Leon, M.; Shin, H. S. Weldability Assessment of Mg Alloy (AZ31B) Sheets by an Ultrasonic Spot Welding Method. J. Mater. Process. Technol. 2017, 243, 1–8. DOI: 10.1016/j.jmatprotec.2016.11.022.
  • Satpathy, M. P.; Mohapatra, K. D.; Sahoo, S. K.; Ultrasonic Spot Welding of Al–Cu Dissimilar Metals: A Study on Parametric Influence and Thermo-mechanical Simulation. Int. J. Model. Simul. 2018, 38(2), 83–95. DOI: 10.1080/02286203.2017.1395198.
  • Fujii, H. T.; Goto, Y.; Sato, Y. S.; Kokawa, H. Microstructure and Lap Shear Strength of the Weld Interface in the Ultrasonic Welding of Al Alloy to Stainless Steel. Scr. Mater. 2016, 116, 135–138. DOI: 10.1016/j.scriptamat.2016.02.004.
  • Fujii, H. T.; Sriraman, M. R.; Babu, S. S. Quantitative Evaluation of Bulk and Interface Microstructure in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing. Metall. Mater. Trans. A. 2011, 42(13), 4045–4055. DOI: 10.1007/s11661-011-0805-x.
  • Fujii, H. T.; Endo, H.; Sato, Y. S.; Kokawa, H. Interfacial Microstructure Evolution and Weld Formation during Ultrasonic Welding of Al Alloy to Cu. Mater. Charact. 2018, 139, 233–240. DOI: 10.1016/j.matchar.2018.03.010.
  • Mani Prabu, S. S.; Madhu, H. C.; Perugu, C.-S.; Akash, K.; Ajay Kumar, P.; Kailas, S. V.; Anbarasu, M.; Palani, I. A. Microstructure, Mechanical Properties and Shape Memory Behaviour of Friction Stir Welded Nitinol. Mater. Sci. Eng. A. 2017, 693, 233–236. DOI: 10.1016/j.msea.2017.03.101.
  • Otsuka, K.; Ren, X. Physical Metallurgy of Ti-Ni-based Shape Memory Alloys. Prog. Mater. Sci. 2005, 50, 511–678. DOI: 10.1016/j.pmatsci.2004.10.001.
  • Liu, Y.; Galvin, S. P. Criteria for Pseudoelasticity in Near-equiatomic NiTi Shape Memory Alloys. Acta Mater. 1997, 45, 4431–4439. DOI: 10.1016/S1359-6454(97)00144-4.
  • Li, Q.; Zhu, Y. X.; Guo, J. L. Microstructure and Mechanical Properties of Resistance-welded NiTi Stainless Steel Joints. J. Mater. Process. Technol. 2017, 249, 538–548. DOI: 10.1016/j.jmatprotec.2017.07.001.
  • Ijaz, M. F.; Heraud, L.; Castany, P.; Thibon, I.; Gloriant, T. Superelastic Behavior of Biomedical Metallic Alloys. Metall. Mater. Trans. A. 2020, 51, 3733–3741. DOI: 10.1007/s11661-020-05840-y.
  • Ni, Z. L.; Ye, F. X. Dissimilar Joining of Aluminum to Copper Using Ultrasonic Welding. Mater. Manuf. Process. 2016, 31(16), 2091–2100. DOI: 10.1080/10426914.2016.1221101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.