531
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental studies on cryogenic CO2 face milling of Inconel 625 superalloy

&
Pages 814-826 | Received 14 Oct 2020, Accepted 24 Nov 2020, Published online: 23 Dec 2020

References

  • Floreen, S.; Fuchs, G. E.; Yang, W. The Metallurgy of Alloy 625. Superalloys. 1994, 13–37. DOI: 10.7449/1994/Superalloys_1994_13_37.
  • Reed, R. C.; Tao, T.; Warnken, N. Alloys-By-Design: Application to Nickel-Based Single Crystal Superalloys. Acta Mater. 2009, 57, 5898–5913. DOI: 10.1016/j.actamat.2009.08.018.
  • Nath, C.; Brooks, Z.; Kurfess, T. R. Machinability Study and Process Optimization in Face Milling of Some Super Alloys with Indexable Copy Face Mill Inserts. J. Manuf. Process. 2015, 20, 88–97. DOI: 10.1016/j.jmapro.2015.09.006.
  • Akhtar, W.; Sun, J.; Sun, P.; Chen, W.; Saleem, Z. Tool Wear Mechanisms in the Machining of Nickel Based Super-Alloys: A Review. Front. Mech. Eng. 2014, 9(2), 106–119. DOI: 10.1007/s11465-014-0301-2.
  • Ezugwu, E. O.; Bonney, J.; Yamane, Y. An Overview of the Machinability of Aero Engine Alloys. J. Mater. Process Tech. 2003, 134, 233–253. DOI: 10.1016/S0924-0136(02)01042-7.
  • Pervaiz, S.; Rashid, A.; Deiab, I.; Nicolescu, M. Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review. Mater. Manuf. Processes. 2014, 29(3), 219–252. DOI: 10.1080/10426914.2014.880460.
  • Parida, A. K.; Maity, K. Comparison the Machinability of Inconel 718, Inconel 625 and Monel 400 in Hot Turning Operation. Eng. Sci. Technol. Int. J. 2018, 21(3), 364–370. DOI: 10.1016/j.jestch.2018.03.018.
  • Jawahir, I. S.; Brinksmeier, E.; M’Saoubi, R.; Aspinwall, D. K.; Outeiro, J. C.; Meyer, D.; Umbrello, D.; Jayal, A. D. Surface Integrity in Material Removal Processes: Recent Advances. CIRP Ann. Manuf. Technol. 2011, 60(2), 603–626. DOI: 10.1016/j.cirp.2011.05.002.
  • Shokrani, A.; Dhokia, V.; Newman, S.; Imani-Asrai, R. An Initial Study of the Effect of Using Liquid Nitrogen Coolant on the Surface Roughness of Inconel 718 Nickel-Based Alloy in CNC Milling. Proc. CIRP. 2012, 3, 121–125. DOI: 10.1016/j.procir.2012.07.022.
  • Jerold, D.; Kumar, M. P. Machining of AISI 316 Stainless Steel under Carbon-Di-Oxide Cooling. Mater. Manuf. Processes. 2012, 27(10), 1059–1065. DOI: 10.1080/10426914.2011.654153.
  • Ravi, S.; Kumar, M. P. Experimental Investigation of Cryogenic Cooling in Milling of AISI D3 Tool Steel. Mater. Manuf. Processes. 2012, 27(10), 1017–1021. DOI: 10.1080/10426914.2011.654157.
  • Kitagawa, T.; Kubo, A.; Maekawa, K. Temperature and Wear of Cutting Tools in High-Speed Machining of Incone1718 and Ti-6A1-6V-2Sn. Wear. 1997, 202(2), 142–148. DOI: 10.1016/S0043-1648(96)07255-9.
  • Chetan,; Ghosh, S.; Rao, P. V. Environment Friendly Machining of Ni-Cr-Co Based Super Alloy Using Different Sustainable Techniques. Mater. Manuf. Processes. 2016, 31(7), 852–859. DOI: 10.1080/10426914.2015.1037913.
  • Jebaraj, M.; Kumar, M. P.; Yuvaraj, N.; Rahman, G. M. Experimental Study of the Influence of the Process Parameters in the Milling of Al6082-T6 Alloy. Mater. Manuf. Processes. 2019, 34(12), 1411–1427. DOI: 10.1080/10426914.2019.1594271.
  • Yildirim, C. V.; Kivak, T.; Sarikaya, M.; Sirin, S. Evaluation of Tool Wear, Surface Roughness/Topography and Chip Morphology When Machining of Ni-Based Alloy 625 under MQL, Cryogenic Cooling and CryoMQL. J. Mater. Res. Technol. 2020, 9(2), 2079–2092. DOI: 10.1016/j.jmrt.2019.12.069.
  • Sharma, V. S.; Singh, G.; Sørby, K. A. Review on Minimum Quantity Lubrication for Machining Processes. Mater. Manuf. Processes. 2015, 30(8), 935–953. DOI: 10.1080/10426914.2014.994759.
  • Pereira, O.; Celaya, A.; Urbikaín, G.; Rodríguez, A.; Fernández-Valdivielso, A.; López de Lacalle, L. N. CO2 Cryogenic Milling of Inconel 718: Cutting Forces and Tool Wear. J. Mater. Res. Technol. 2020, 9(4), 8459–8468. DOI: 10.1016/j.jmrt.2020.05.118.
  • Caliskan, H.; Kurbanoğlu, C.; Panjan, P.; Kramar, D. Investigation of the Performance of Carbide Cutting Tools with Hard Coatings in Hard Milling Based on the Response Surface Methodology. Int. J. Adv. Manuf. Technol. 2013, 66(5–8), 883–893. DOI: 10.1007/s00170-012-4374-y.
  • Arunramnath, R.; Thyla, P. R.; Mahendrakumar, N.; Ramesh, M.; Siddeshwaran, A. Multi-attribute Optimization of End Milling Epoxy Granite Composites Using TOPSIS. Mater. Manuf. Processes. 2019, 34(5), 530–543. DOI: 10.1080/10426914.2019.1566960.
  • Yuvaraj, N.; Kumar, M. P. Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Mater. Manuf. Processes. 2015, 30(7), 882–889. DOI: 10.1080/10426914.2014.994763.
  • Jebaraj, M.; Kumar, M. P.; Yuvaraj, N.; Anburaj, R. Investigation of Surface Integrity in End Milling of 55NiCrMoV7 Die Steel under the Cryogenic Environments. Mach. Sci. Technol. 2020, 24(3), 465–488. DOI: 10.1080/10910344.2019.1698612.
  • Jebaraj, M.; Kumar, M. P. Effect of Cryogenic CO2 and LN2 Coolants in Milling of Aluminum Alloy. Mater. Manuf. Processes. 2019, 34(5), 511–520. DOI: 10.1080/10426914.2018.1532591.
  • Ramanujam, R.; Muthukrishnan, N.; Raju, R. Optimization of Cutting Parameters for Turning Al-SiC(10p) MMC Using ANOVA and Grey Relational. Int. J. Pr. Eng. Manuf. 2011, 12(4), 651–656. DOI: 10.1007/s12541-011-0084-x.
  • Olson, D. L.;. Comparison of Weights in TOPSIS Models. Math. Comput. Model. 2004, 40(7–8), 721–772. DOI: 10.1016/j.mcm.2004.10.003.
  • Çalişkan, H.; Küçükköse, M. The Effect of a CN/TiAlN Coating on Tool Wear, Cutting Force, Surface Finish and Chip Morphology in Face Milling of Ti6Al4V Superalloy. Int. J. Refract. Hard. Met. 2015, 50, 304–312. DOI: 10.1016/j.ijrmhm.2015.02.012.
  • Zhao, J.; Liu, Z.; Wang, B.; Hua, Y.; Wang, Q. Cutting Temperature Measurement Using an Improved Two-Color Infrared Thermometer in Turning Inconel 718 with Whisker-Reinforced Ceramic Tools. Ceram. Int. 2008, 44, 19002–19007. DOI: 10.1016/j.ceramint.2018.07.142.
  • Frăţilă, D. F.; Caizar, C. Assessment of Cooling Effect and Surface Quality to Face Milling of AlMg3 Using Several Cooling Lubrication Methods. Mater. Manuf. Processes. 2012, 27(3), 291–296. DOI: 10.1080/10426914.2011.577864.
  • Venugopal, K. A.; Paul, S.; Chattopadhyay, A. B. Tool Wear in Cryogenic Turning of Ti–6Al–4V Alloy. Cryogenics. 2007, 47, 12–18. DOI: 10.1016/j.cryogenics.2006.08.011.
  • Thakur, D. G.; Ramamoorthy, B.; Vijayaraghavan, L. Machinability Investigation of Inconel 718 in High-Speed Turning. Int. J. Adv. Manuf. Technol. 2009, 45(5–6), 421–429. DOI: 10.1007/s00170-009-1987-x.
  • Ravi, S.; Kumar, M. P. Experimental Investigations on Cryogenic Cooling by Liquid Nitrogen in the End Milling of Hardened Steel. Cryogenics. 2011, 51(9), 509–515. DOI: 10.1016/j.cryogenics.2011.06.006.
  • Mulyana, T.; Rahim, E. A.; Yahaya, S. N. M. The Influence of Cryogenic Supercritical Carbon Dioxide Cooling on Tool Wear during Machining High Thermal Conductivity Steel. J. Clean. Prod. 2017, 164, 950–962. DOI: 10.1016/j.jclepro.2017.07.019.
  • Rahim, E. A.; Jaafar, M. N.; Mohid, Z.; Ibrahim, M. R.; Ahmad, S. A. Study on Cryogenic Supercritical Carbon Dioxide Coolant Delivery Technique When Machining of AISI 1045 Steel. J. Mech. Engg. 2018, 5(3), 37–49.
  • Şirin, S.; Kivak, T. Performances of Different Eco-Friendly Nanofluid Lubricants in the Milling of Inconel X-750 Superalloy. Tribol. Int. 2019, 137, 180–192. DOI: 10.1016/j.triboint.2019.04.042.
  • Jawahir, I. S.; Attia, H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S. T.; Pusavec, F.; Putz, M.; Rech, J.; et al. Cryogenic Manufacturing Processes. CIRP Ann. 2016, 65(2), 713–736. DOI: 10.1016/j.cirp.2016.06.007.
  • Mathew, N. T.; Laxmanan, V. Temperature Rise in Workpiece and Cutting Tool during Drilling of Titanium Aluminide under Sustainable Environment. Mater. Manuf. Processes. 2018, 33(16), 1765–1774. DOI: 10.1080/10426914.2018.1476770.
  • Solter, J.; Gulpak, M. Heat Partitioning in Dry Milling of Steel. CIRP Ann. 2012, 61(1), 87–90. DOI: 10.1016/j.cirp.2012.03.046.
  • List, G.; Sutter, G.; Bouthiche, A. Cutting Temperature Prediction in High Speed Machining by Numerical Modelling of Chip Formation and Its Dependence with Crater Wear. Int. J. Mach. Tool. Manu. 2012, 54-55, 1–9. DOI: 10.1016/j.ijmachtools.2011.11.009.
  • Kumar, M. P.; Jebaraj, M.; Rahman, G. M. Experimental Investigation on the Effect of Cryogenic CO2 Cooling in End Milling of Aluminium Alloy. In Manuf. Engg., Lect. Notes on Multidisci. Indust. Engg.; Sharma, V., Dixi, T. U., Alba-Baena, N., Eds.; Springer: Singapore, 2019; pp 35–47. DOI: 10.1007/978-981-13-6287-3_3.
  • Jebaraj, M.; Kumar, M. P.; Anburaj, R. Effect of LN2 and CO2 Coolants in Milling of 55NiCrMoV7 Steel. J. Manuf. Process. 2020, 53, 318–327. DOI: 10.1016/j.jmapro.2020.02.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.