452
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of microwave-assisted curing process on strength development and curing duration of cellular lightweight geopolymer mortar

ORCID Icon, , , &
Pages 1040-1048 | Received 05 Oct 2020, Accepted 18 Dec 2020, Published online: 19 Feb 2021

References

  • Turner, L. K.; Collins, F. G. Carbon Dioxide Equivalent (Co2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. DOI: 10.1016/j.conbuildmat.2013.01.023.
  • Jitsangiam, P.; Suwan, T.; Pimraksa, K.; Sukontasukkul, P.; Chindaprasirt, P. Challenge of Adopting Relatively Low Strength and Self-cured Geopolymer for Road Construction Application: A Review and Primary Laboratory Study. Int. J. Pavement. Eng. 2019, 1–15. DOI: 10.1080/10298436.2019.1696967.
  • Lloyd, N. A.; Rangan, B. V. Geopolymer Concrete: A Review of Development and Opportunities. 35th Conference on Our World in Concrete and Structures, Singapore Concrete Institute, Singapore, 2010; pp 25–27.
  • Suwan, T.; Fan, M. Effect of Manufacturing Process on the Mechanisms and Mechanical Properties of Fly Ash-based Geopolymer in Ambient Curing Temperature. Mater. Manuf. Process. 2017, 32(5), 461–467. DOI: 10.1080/10426914.2016.1198013.
  • Satpute Manesh, B.; Wakchaure Madhukar, R.; Patankar Subhash, V. Effect of Duration and Temperature of Curing on Compressive Strength of Geopolymer Concrete. Int. J. Eng. Innov. Technol. 2012, 1(5), 152–155.
  • Narayanan, A.; Shanmugasundaram, P. An Experimental Investigation on Flyash-based Geopolymer Mortar under Different Curing Regime for Thermal Analysis. Energ. Buildings. 2017, 138, 539–545. DOI: 10.1016/j.enbuild.2016.12.079.
  • Suwan, T.; Fan, M.; Braimah, N. Micro-mechanisms and Compressive Strength of Geopolymer-Portland Cementitious System under Various Curing Temperatures. Mater. Chem. Phys. 2016, 180, 219–225. DOI: 10.1016/j.matchemphys.2016.05.069.
  • Kusbiantoro, A.; Nuruddin, M. F.; Shafiq, N.; Qazi, S. A. The Effect of Microwave Incinerated Rice Husk Ash on the Compressive and Bond Strength of Fly Ash Based Geopolymer Concrete. Constr. Build. Mater. 2012, 36, 695–703. DOI: 10.1016/j.conbuildmat.2012.06.064.
  • Chindaprasirt, P.; Rattanasak, U.; Taebuanhuad, S. Role of Microwave Radiation in Curing the Fly Ash Geopolymer. Adv. Powder. Technol. 2013, 24(3), 703–707. DOI: 10.1016/j.apt.2012.12.005.
  • Graytee, A.; Sanjayan, J. G.; Nazari, A. Development of a High Strength Fly Ash-based Geopolymer in Short Time by Using Microwave Curing. Ceram. Int. 2018, 44(7), 8216–8222. DOI: 10.1016/j.ceramint.2018.02.001.
  • Alem, S. A. A.; Latifi, R.; Angizi, S.; Hassanaghaei, F.; Aghaahmadi, M.; Ghasali, E.; Rajabi, M. Microwave Sintering of Ceramic Reinforced Metal Matrix Composites and Their Properties: A Review. Mater. Manuf. Process. 2020, 35(3), 303–327. DOI: 10.1080/10426914.2020.1718698.
  • Singh, M.; Siddique, R. Properties of Concrete Containing High Volumes of Coal Bottom Ash as Fine Aggregate. J. Clean. Prod. 2018, 91, 269–278. DOI: 10.1016/j.jclepro.2014.12.026.
  • Chaipanich, A.; Chindaprasirt, P. The Properties and Durability of Autoclaved Aerated Concrete Masonry Blocks. In Eco-Efficient Masonry Bricks and Blocks; Pacheco-Torgal, F., Lourenço, P. B., Labrincha, J. A., Kumar, S., Chindaprasirt, P., Eds.; Woodhead Publishing, UK, 2015; pp 215–230.
  • ACI Committee 213. Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute, USA, 2014. ISBN: 978-0-87031-897-9
  • Hong, S.; Kim, H. Effects of Microwave Energy on Fast Compressive Strength Development of Coal Bottom Ash-Based Geopolymers. Sci. Rep. 2019, 9(1), 1–17. DOI: 10.1038/s41598-019-52160-2.
  • Haq, E. U.; Padmanabhan, S. K.; Zubair, M.; Ali, L.; Licciulli, A. Intumescence Behaviour of Bottom Ash Based Geopolymer Mortar through Microwave Irradiation–as Affected by Alkali Activation. Constr. Build. Mater. 2016, 126, 951–956. DOI: 10.1016/j.conbuildmat.2016.08.135.
  • Ul Haq, E.; Padmanabhan, S. K.; Licciulli, A. Synthesis and Characteristics of Fly Ash and Bottom Ash Based geopolymers–A Comparative Study. Ceram. Int. 2014, 40(2), 2965–2971. DOI: 10.1016/j.ceramint.2013.10.012.
  • ASTM C618-19. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, 2019. www.astm.org.
  • Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative Study on the Characteristics of Fly Ash and Bottom Ash Geopolymers. J. Waste. Manag. 2009, 29(2), 539–543. DOI: 10.1016/j.wasman.2008.06.023.
  • Chotetanorm, C.; Chindaprasirt, P.; Sata, V.; Rukzon, S.; Sathonsaowaphak, A. High-calcium Bottom Ash Geopolymer: Sorptivity, Pore Size, and Resistance to Sodium Sulfate Attack. J. Mater. Civil. Eng. 2013, 25(1), 105–111. DOI: 10.1061/(ASCE)MT.1943-5533.0000560.
  • Suwan, T.; Fan, M. Influence of OPC Replacement and Manufacturing Procedures on the Properties of Self-cured Geopolymer. Constr. Build. Mater. 2014, 73, 551–561. DOI: 10.1016/j.conbuildmat.2014.09.065.
  • Onutai, S.; Jiemsirilers, S.; Thavorniti, P.; Kobayashi, T. Fast Microwave Syntheses of Fly Ash Based Porous Geopolymers in the Presence of High Alkali Concentration. Ceram. Int. 2016, 42(8), 9866–9874. DOI: 10.1016/j.ceramint.2016.03.086.
  • Suwan, T.; Wattanachai, P. Properties and Internal Curing of Concrete Containing Recycled Autoclaved Aerated Lightweight Concrete as Aggregate. Adv. Mater. Sci. Eng. 2017, 2017, 1–11. DOI: 10.1155/2017/2394641.
  • Suwan, T.; Paphawasit, B.; Zhou, X. M.; Wattanachai, P. Value Added Product of Lightweight Cement from Industrial By-Products Using Geopolymer Technique. Mater. Scie. Forum. 2018, 934, 200–205. DOI: 10.4028/www.scientific.net/MSF.934.200.
  • Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. Workability and Strength of Lignite Bottom Ash Geopolymer Mortar. J. Hazard. Mater. 2009, 168(1), 44–50. DOI: 10.1016/j.jhazmat.2009.01.120.
  • Sioshansi, F. P.;. Energy, Sustainability, and the Environment: Technology, Incentives, Behavior; Elsevier Publishing: online google book, USA, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.