143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Joining process of dissimilar materials using three-dimensional electrodeposited Ni-Cu film

ORCID Icon &
Pages 1076-1083 | Received 02 Nov 2020, Accepted 28 Jan 2021, Published online: 15 Feb 2021

References

  • Liu, Z.; Tan, H.; Kuang, X.; Hao, H.; Zhao, F. The Negative Impact of Vehicular Intelligence on Energy Consumption. J. Adv. Transport. 2019, 2019, 1521928. DOI: 10.1155/2019/1521928.
  • Dmytriiev, I. A.; Shevchenko, I. Y.; Kudryavtsev, V. M.; Lushnikova, O. M. The World Experience and a Unified Model for Government Regulation of Development of the Automotive Industry. Public Policy Adm. 2019, 18, 46–58. DOI: 10.5755/j01.ppaa.18.3.24720.
  • Agarwal, J.; Sahoo, S.; Mohanty, S.; Nayak, S. K. Progress of Novel Techniques for Lightweight Automobile Applications through Innovative Eco-Friendly Composite Materials: A Review. J. Thermoplastic Composite Materials. 2019, 30, 978–1013. DOI: 10.1177/0892705718815530.
  • Gao, J.; Chen, H.; Dave, K.; Chen, J.; Jia, D. Fuel Economy and Exhaust Emissions of a Diesel Vehicle under Real Traffic Conditions. Energy Sci. Eng. 2020, 8, 1781–1792. DOI: 10.1002/ese3.632.
  • Meng, M.; Li, M. Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry. Sustainability. 2020, 12, 2596. DOI: 10.3390/su12072596.
  • Orynycz, O.; Tucki, K.; Wasiak, A.; Mruk, R. Computer Modelling of Automobile Engine Performance as the Source of Implications for Automobile Technology Management. IOP Conf. Ser. Mater. Sci. Eng. 2019, 710, 012007. DOI: 10.1088/1757-899X/710/1/012007.
  • Matteis, P.; Scavino, G.; D’Aiuto, F.; Firrao, D. Fatigue Behavior of Dual‐Phase and TWIP Steels for Lightweight Automotive Structures. Steel Res. Int. 2012, 83, 950–956. DOI: 10.1002/srin.201100329.
  • Taub, A. I.; Luo, A. A. Advanced Lightweight Materials and Manufacturing Processes for Automotive Applications. Mater. Eng. Propelling Innovation. 2015, 1045–1054. DOI: 10.1557/mrs.2015.268.
  • Kulekci, M. K.;. Magnesium and Its Alloys Applications in Automotive Industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. DOI: 10.1007/s00170-007-1279-2.
  • Wadas, T.; Tisza, M. Lightweight Manufacturing of Automotive Parts. IOP Conf. Ser. Mater. Sci. Eng. 2020, 903, 012036. DOI: 10.1088/1757-899X/903/1/012036.
  • Akhtara, M.; Qamarb, S. Z.; Muhammada, M.; Nadeem, A. Optimum Heat Treatment of Aluminum Alloy Used in Manufacturing of Automotive Piston Components. Mater. Manuf. Processes. 2018, 33, 1874–1880. DOI: 10.1080/10426914.2018.1512128.
  • Taylor, T.; Penney, D.; Yanagimoto, J. One-Step Process for Press Hardened Steel–Carbon Fiber Reinforced Thermoset Polymer Hybrid Parts. Steel Res. Int. 2020, 91, 2000085. DOI: 10.1002/srin.202000085.
  • Messana, A.; Ferraris, A.; Airale, A. G.; Fasana, A.; Carello, M. Enhancing Vibration Reduction on Lightweight Lower Control Arm. Shock Vib. 2020, 2020, 8891831. DOI: 10.1155/2020/8891831.
  • Pruksawan, S.; Samitsu, S.; Fujii, Y.; Torikai, N.; Naito, M. Toughening Effect of Rodlike Cellulose Nanocrystals in Epoxy Adhesive. ACS Appl. Polymer Mater. 2020, 2, 1234–1243. DOI: 10.1021/acsapm.9b01102.
  • Impero, F.; Dix, M.; Squillace, A.; Prisco, U.; Palumbo, B.; Tagliaferri, F.; Comparison Between, A. Wet and Cryogenic Drilling of CFRP/Ti Stacks. Mater. Manuf. Processes. 2018, 33, 1354–1360. DOI: 10.1080/10426914.2018.1453162.
  • Fangwu, M.; Lu, H.; Yang, Z.; Chen, S.; Yongfeng, P. Multi-Island Genetic Algorithm and Kriging Model-Based Design of Vehicle Product Comprising Multi-Material. IEEE Access. 2018, 6, 53397–53408. DOI: 10.1109/ACCESS.2018.2871776.
  • Xu, K.; Zhang, S. Research on Friction Stir Spot Welding Brazing Process and Properties of Dissimilar Metals DP590 and 6061. Adv. Mater. Sci. Eng. 2020, 2020, 9701976. DOI: 10.1155/2020/9701976.
  • Ge, Y.; Xia, Y. Dynamic Behavior of Self-Piercing Riveted and Mechanical Clinched Joints of Dissimilar Materials: An Experimental Comparative Investigation. Adv. Mater. Sci. Eng. 2019, 2019, 6463576. DOI: 10.1155/2019/6463576.
  • Kimapong, K.; Watanabe, T. Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding. Mater. Trans. 2005, 46, 835–841. DOI: 10.2320/matertrans.46.835.
  • Chu, M.; He, X.; Zhang, J.; Lei, L. Clinching of Similar and Dissimilar Sheet Materials of Galvanized Steel, Aluminium Alloy and Titanium Alloy. Mater. Trans. 2018, 59, 694–697. DOI: 10.2320/matertrans.M2017319.
  • Shen, Z.; Chen, J.; Ding, Y.; Hou, B.; Amirkhiz, B. S.; Chan, K.; Gerlich, A. P. Role of Interfacial Reaction on the Mechanical Performance of Al/steel Dissimilar Refill Friction Stir Spot Welds. Sci. Technol. Weld. Joining. 2017, 18, 462–477. DOI: 10.1080/13621718.2017.1414022.
  • He, X.; Yu, T.; Gao, A.; Zhang, Y. Investigations of Join-Ability and Energy Absorption of Clinched Joints in Titanium and Aluminum-Lithium Sheet Materials. Mater. Trans. 2016, 57, 1849–1852. DOI: 10.2320/matertrans.M2016223.
  • Nagy, M.; Behúlová, M.; Pérez, M. R. Microstructural and Mechanical Properties of Dissimilar Al-Ti Joints Prepared by GTAW Welding-Brazing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 465, 012006. DOI: 10.1088/1757-899X/465/1/012006.
  • Li, Y.; Wei, Z.; Wang, Z.; Li, Y. Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B. J. Manuf. Sci. Eng. 2013, 135, 061007. DOI: 10.1115/1.4025421.
  • Dong, W.; Huang, R.; Zhao, H.; Tan, C. Effect of Beam Oscillating Parameters on Laser Welding of Mg/Ti Joints. J. Phys. 2020, 1622, 012022. DOI: 10.1088/1742-6596/1622/1/012022.
  • Sheng, L.; Jiao, J.; Du, B.; Wang, F.; Wang, Q. Influence of Processing Parameters on Laser Direct Joining of CFRTP and Stainless Steel. Adv. Mater. Sci. Eng. 2018, 2018, 2530521. DOI: 10.1155/2018/2530521.
  • Nagatsuka, K.; Xiao, B.; Wu, L.; Nakata, K.; Saeki, S.; Kitamoto, Y.; Iwamoto, Y. Resistance Spot Welding of Metal/Carbon-Fibrereinforced Plastics and Applying Silane Coupling Treatment. Sci. Technol. Weld. Joining. 2018, 23, 181–186. DOI: 10.1080/13621718.2017.1362159.
  • Zhang, Z.; Shan, J.; Tan, X.; Zhang, J. Improvement of the Laser Joining of CFRP and Aluminum via Laser Pre-treatment. Int. J. Adv. Manuf. Technol. 2017, 90, 3465–3472. DOI: 10.1007/s00170-016-9646-5.
  • Wakui, K.; Ohtake, N. Joining of CFRTP and Aluminum Alloy Thin Plates Using Ultrasonic Vibrations. Mech. Eng. J. 2019, 6, 19–00046. DOI: 10.1299/mej.19-00046.
  • Kobayashi, T.; Shohji, I. Fabrication of Three-Dimensional Microstructure Film by Ni–Cu Alloy Electrodeposition for Joining Dissimilar Materials. Mater. Scie. Forum. in press.Materials Science Forum, 2021, 1016, 738-743. DOI:10.4028/www.scientific.net/MSF.1016.738.
  • Li, Z.; Bian, C.; Lee, C. M.; Chen, X.; Li, Y. Y. Nickel Nanotube Array via Electroplating and Dealloying. Thin Solid Films. 2018, 658, 1–6. DOI: 10.1016/j.tsf.2018.05.015.
  • Liu, Z.; Elbert, D.; Chien, C.; Searson, P. C. FIB/TEM Characterization of the Composition and Structure of Core/Shell Cu-Ni Nanowires. Nano Lett. 2008, 8, 2166–2170. DOI: 10.1021/n1080492u.
  • Chang, J. K.; Hsu, S. H.; Sun, I. W.; Tsai, W. T. Formation of Nanoporous Nickel by Selective Anodic Etching of the Nobler Copper Component from Electrodeposited Nickel–Copper Alloys. J. Phys. Chem. C. 2008, 112, 1371–1376. DOI: 10.1021/jp0772474.
  • Lee, J. M.; Ko, J. S. Cu–Ni Alloy Electrodeposition on Microstructured Surfaces. J. Mater. Sci. 2015, 50, 393–402. DOI: 10.1007/s10853-014-8598-0.
  • Lee, J. M.; Lee, S. H.; Ko, J. S. Influence of Open Area Ratio on Microstructure Shape in Cu–Ni Alloy Electrodeposition. Appl. Phys. A. 2018, 118, 579–585. DOI: 10.1007/s00339-014-8759-7.
  • Haciismailoglu, M.; Alper, M. Effect of Electrolyte pH and Cu Concentration on Microstructure of Electrodeposited Ni–Cu Alloy Films. Surf. Coat. Technol. 2011, 206, 1430–1438. DOI: 10.1016/j.surfcoat.2011.09.010.
  • Goranova, D.; Avdeev, G.; Rashkov, R. Electrodeposition and Characterization of Ni–Cu Alloys. Surf. Coat. Technol. 2014, 240, 204–210. DOI: 10.1016/j.surfcoat.2013.12.014.
  • Goranova, D.; Rashkov, R.; Avdeev, G.; Tonchev, V. Electrodeposition of Ni–Cu Alloys at High Current Densities: Details of the Elements Distribution. J. Mater. Sci. 2016, 51, 8663–8673. DOI: 10.1007/s10853-016-0126-y.
  • Jiao, J.; Wang, Q.; Wang, F.; Zan, S.; Zhang, W. Numerical and Experimental Investigation on Joining CFRTP and Stainless Steel Using Fiber Lasers. J. Materials Processing Tech. 2017, 240, 362–369. DOI: 10.1016/j.jmatprotec.2016.10.013.
  • Wu, L. H.; Xiao, B. L.; Nagatsuka, K.; Nakata, K.; Ma, Z. Y. Achieving Strong Friction Lap Joints of Carbon-Fiber Reinforced Plastic and Metals by Modifying Metal Surface Structure via Laser-Processing Pretreatment. Compos. Struct. 2020, 242, 112167. DOI: 10.1016/j.compstruct.2020.112167.
  • Jojibabu, P.; Jagannatham, M.; Haridoss, P.; Ram, G. D. J.; Deshpande, A. P.; Bakshi, S. R. Effect of Different Carbon Nano-fillers on Rheological Properties and Lap Shear Strength of Epoxy Adhesive Joints. Composites: Part A. 2016, 82, 53–64. DOI: 10.1016/j.compositesa.2015.12.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.