749
Views
10
CrossRef citations to date
0
Altmetric
Review

A Review on Closed Cell Metal Matrix Syntactic Foams: A Green Initiative towards Eco-Sustainability

ORCID Icon & ORCID Icon
Pages 1333-1351 | Received 02 Mar 2021, Accepted 07 May 2021, Published online: 09 Jun 2021

References

  • Ajay Kumar, P.; Rohatgi, P.; Weiss, D. 50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities. Int. J. Metalcast. 2020, 14(2), 291–317. DOI: 10.1007/s40962-019-00375-4..
  • Hong, Y.; Fang, X.; Yao, D. Microwave Processing of Syntactic Foam from an Expandable Thermoset/Thermoplastic Mixture. Polym. Eng. Sci. 2015, 55(8), 1818–1828. DOI: 10.1002/pen.24021..
  • Maddever, W.; Guinehut, S. Use of Aluminum Foam to Increase Crash Box Efficiency. SAE Tech. Papers. 2005, (724). DOI: 10.4271/2005-01-0704..
  • Gupta, N.; Rohatgi, P. K. Metal Matrix Syntactic Foams. In In Comprehensive Composite Materials IIEditor; Peter W.R. Beaumont, Carl H. Zweben, Eds.; Elsevier: USA, 2018; Vol. 4, pp 364–385.
  • An, Y.; Yang, S.; Zhao, E.; Wang, Z. Fabrication and Experimental Investigation of Metal Grid Structure-Reinforced Aluminum Foams. Mater. Manuf. Processes. 2018, 33(5), 528–533. DOI: 10.1080/10426914.2017.1364747.
  • Zhang, L. P.; Zhao, Y. Y. Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting. J. Compos. Mater. 2007, 41(17), 2105–2117. DOI: 10.1177/0021998307074132.
  • Resnick, I.; Macander, A. Syntatic Foams for Deep Sea Engineering Applications. J. Const. Div. 1970, 96(1), 45–60. DOI: 10.1061/JCCEAZ.0000267.
  • Zhi, C.; Long, H. Sound Absorption Properties of Syntactic Foam Reinforced by Warp-Knitted Spacer Fabric. Cell. Polym. 2016, 35(5), 271–286. DOI: 10.1177/026248931603500503.
  • Gnanavelbabu, A.; Sunu Surendran, K. T.; Kumar, S. Influence of Ultrasonication Power on Grain Refinement, Mechanical Properties and Wear Behaviour of AZ91D/Nano-Al2O3 Composites. Mater. Res. Express. 2020, 7(1), 016544. DOI: 10.1088/2053-1591/ab64d7.
  • Wouterson, E. M.; Boey, F. Y. C.; Hu, X.; Wong, S. C. Fracture and Impact Toughness of Syntactic Foam. J. Cell. Plast. 2004, 40(2), 145–154. DOI: 10.1177/0021955X04041960..
  • Golestanipour, M.; Mashhadi, H. A.; Abravi, M. S.; Malekjafarian, M. M.; Sadeghian, M. H. Manufacturing of Al/SiC P Composite Foams Using Calcium Carbonate as Foaming Agent. Mater. Sci. Technol. 2011, 27(5), 923–927. DOI: 10.1179/026708310X12677993662168..
  • Kemény, A.; Károly, D. Mechanical and Microstructural Features of Ceramic Hollow Spheres. Acta Materialia Transylvanica. 2019, 2(1), 27–31. DOI: 10.33924/amt-2019-01-05..
  • Yoriya,; Intana,; Tepsri. Separation of Cenospheres from Lignite Fly Ash Using Acetone–Water Mixture. Appl. Sci. 2019, 9(18), 3792. DOI: 10.3390/app9183792..
  • Amirjan, M.; Bozorg, M. Properties and Corrosion Behavior of Al Based Nanocomposite Foams Produced by the Sintering-Dissolution Process. Int. J. Miner. Metall. Mater. 2018, 25(1), 94–101. DOI: 10.1007/s12613-018-1551-5.
  • Lu, H.; Wang, X.; Zhang, T.; Cheng, Z.; Design, F. Q. Fabrication, and Properties of High Damping Metal Matrix Composites—A Review. Materials. 2009, 2(3), 958–977. DOI: 10.3390/ma2030958.
  • Orbulov, I. N.; Ginsztler, J. Compressive Behaviour of Metal Matrix Syntactic Foams. Acta Polytech. Hungarica. 2012, 9(2), 43–56.
  • Kausar, A.;. Scientific Worth of Polymer and Graphene Foam-Based Nanomaterials. J. Chin. Adv. Mater. Soc. 2018, 6(4), 779–800. DOI: 10.1080/22243682.2018.1555677..
  • Kausar, A.;. Polyurethane Composite Foams in High-Performance Applications: A Review. Polym.-Plast. Technol. Eng. 2018, 57(4), 346–369. DOI: 10.1080/03602559.2017.1329433.
  • Danish, A.; Mosaberpanah, M. A. Formation Mechanism and Applications of Cenospheres: A Review. J. Mater. Sci. 2020, 55(11), 4539–4557. DOI: 10.1007/s10853-019-04341-7.
  • Skleničková, K.; Abbrent, S.; Halecký, M.; Kočí, V.; Beneš, H. Biodegradability and Ecotoxicity of Polyurethane Foams: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 1–46. doi:10.1080/10643389.2020.1818496.
  • Guo, Z. X.; Jee, C. S. Y.; Özgüven, N.; Evans, J. R. G. Novel Polymer–Metal Based Method for Open Cell Metal Foams Production. Mater. Sci. Technol. 2000, 16(7–8), 776–780. DOI: 10.1179/026708300101508423.
  • Letellier, M.; Macutkevic, J.; Paddubskaya, A.; Klochkov, A.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Microwave Dielectric Properties of Tannin-Based Carbon Foams. Ferroelectrics. 2015, 479(1), 119–126. DOI: 10.1080/00150193.2015.1012036.
  • Singh, R.; Lee, P. D.; Dashwood, R. J.; Lindley, T. C. Titanium Foams for Biomedical Applications: A Review. Mater. Technol. 2010, 25(3–4), 127–136. DOI: 10.1179/175355510X12744412709403.
  • Taherishargh, M.; Katona, B.; Fiedler, T.; Orbulov, I. N. Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams. J. Compos. Mater. 2017, 51(6), 773–781. DOI: 10.1177/0021998316654305.
  • Ahmadi, H.; Liaghat, G.; Shokrieh, M.; Hadavinia, H.; Ordys, A. Aboutorabi, A. Quasi-Static and Dynamic Compressive Properties of Ceramic Microballoon Filled Syntactic Foam. J. Compos. Mater. 2015, 49(10), 1255–1266. DOI: 10.1177/0021998314533362.
  • Szlancsik, A.; Katona, B.; Dombóvári, Z.; Orbulov, I. N. On the Effective Young’s Modulus of Metal Matrix Syntactic Foams. Mater. Sci. Technol. 2017, 33(18), 2283–2289. DOI: 10.1080/02670836.2017.1374497.
  • Pang, Q.; Hu, Z. L.; Song, J. S. Preparation and Mechanical Properties of Closed-Cell CNTs-Reinforced Al Composite Foams by Friction Stir Welding. Int. J. Adv. Manuf. Technol. 2019, 103(5–8), 3125–3136. DOI: 10.1007/s00170-019-03765-4.
  • Soni, B.; Mass-Scale, B. S. Processing of Open-Cell Metallic Foams by Pressurized Casting Method. J. Porous Mater. 2017, 24(1), 29–37. DOI: 10.1007/s10934-016-0233-9..
  • Qu, Y.-N.; Huo, W.-L.; Xi, X.-Q.; Gan, K.; Ma, N.; Hou, B.-Z.; Su, Z.-G.; Yang, J.-L. High Porosity Glass Foams from Waste Glass and Compound Blowing Agent. J. Porous Mater. 2016, 23(6), 1451–1458. DOI: 10.1007/s10934-016-0205-0.
  • Mylavarapu, P.; Woldesenbet, E. Characterization of Syntactic Foams - an Ultrasonic Approach. J. Cell. Plast. 2008, 44(3), 203–222. DOI: 10.1177/0021955X07087330.
  • Zeltmann, S. E.; Chen, B.; Gupta, N. Thermal Expansion and Dynamic Mechanical Analysis of Epoxy Matrix–Borosilicate Glass Hollow Particle Syntactic Foams. J. Cell. Plast. 2018, 54(3), 463–481. DOI: 10.1177/0021955X17691566.
  • Bobkova, N. M.; Trusova, E. E.; Savchin, V. V.; Sabadakha, E. N.; Pavlyukevich, Y. G. Obtaining Hollow Glass Microspheres and Their Use in the Production of Water-Dispersion Coatings. Glass Ceram. 2020, 76(11–12), 401–405. DOI: 10.1007/s10717-020-00210-x.
  • Brothers, A. H.; Dunand, D. C. Syntactic Bulk Metallic Glass Foam. Appl. Phys. Lett. 2004, 84(7), 1108–1110. DOI: 10.1063/1.1646467..
  • Dando, K. R.; Salem, D. R. The Effect of Nano-Additive Reinforcements on Thermoplastic Microballoon Epoxy Syntactic Foam Mechanical Properties. J. Compos. Mater. 2018, 52(7), 971–980. DOI: 10.1177/0021998317716267..
  • Sharma, J.; Polizos, G. Hollow Silica Particles: Recent Progress and Future Perspectives. Nanomaterials. 2020, 10(8), 1599. DOI: 10.3390/nano10081599..
  • Hu, Z.-L.; Pang, Q.; Ji, G.-Q.; Wu, G.-H. Mechanical Behaviors and Energy Absorption Properties of Y/Cr and Ce/Cr Coated Open-Cell Nickel-Based Alloy Foams. Rare Met. 2018, 37(8), 650–661. DOI: 10.1007/s12598-018-1084-0.
  • Körner, C.; Singer, R. F. Processing of Metal Foams—Challenges and Opportunities. Adv. Eng. Mater. 2000, 2(4), 159–165. DOI: 10.1002/(SICI)1527-2648(200004)2:4<159::AID-ADEM159>3.0.CO;2-O.
  • Bharti, S.; Ghetiya, N. D.; Patel, K. M. A. Review on Manufacturing the Surface Composites by Friction Stir Processing. Mater. Manuf. Processes. 2021, 36(2), 135–170. DOI: 10.1080/10426914.2020.1813897.
  • Pan, L.; Rao, D.; Yang, Y.; Qiu, J.; Sun, J.; Gupta, N.; Hu, Z. Gravity Casting of Aluminum-Al2O3 Hollow Sphere Syntactic Foams for Improved Compressive Properties. J. Porous Mater. 2020, 27(4), 1127–1137. DOI: 10.1007/s10934-020-00889-x.
  • Orbulov, I. N.; Májlinger, K. Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression. JOM. 2014, 66(6), 882–891. DOI: 10.1007/s11837-014-0914-2.
  • Gupta, N.; Luong, D. D.; Cho, K. Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications. Metals. 2012, 2(3), 238–252. DOI: 10.3390/met2030238.
  • Chaves, I. A.; Taherishargh, M.; Fiedler, T. Long-Term Immersion Exposure of Perlite–Aluminium Syntactic Foam in Seawater. J. Compos. Mater. 2019, 53(9), 1229–1240. DOI: 10.1177/0021998318796264.
  • Salimon, A.; Bréchet, Y.; Ashby, M. F.; Greer, A. L. Potential Applications for Steel and Titanium Metal Foams. J. Mater. Sci. 2005, 40(22), 5793–5799. DOI: 10.1007/s10853-005-4993-x.
  • Sadighikia, S.; Abdolhosseinzadeh, S.; Asgharzadeh, H. Production of High Porosity Zn Foams by Powder Metallurgy Method. Powder Metall. 2015, 58(1), 61–66. DOI: 10.1179/1743290114Y.0000000109.
  • Orbulov, I. N.; Szlancsik, A. On the Mechanical Properties of Aluminum Matrix Syntactic Foams. Adv. Eng. Mater. 2018, 20(5), 1700980. DOI: 10.1002/adem.201700980.
  • Hashim, U. R.; Jumahat, A.; Ismail, M. H.; Razali, R. N. M. Fabrication and Characterisation of Carbon Fibre Reinforced Polymer Rods with Aluminium Foam Core. Mater. Res. Innovations. 2014, 18(sup6), S6-204-S6-208. DOI: 10.1179/1432891714Z.000000000957.
  • Patel, S. K.; Singh, V. P.; Yadav, S. K.; Kuriachen, B.; Nateriya, R. Microstructural and Compressive Deformation Behavior of Aluminum-Foam-Filled Sections. Soft Mater. 2019, 17(1), 14–23. DOI: 10.1080/1539445X.2018.1528457..
  • Szlancsik, A.; Katona, B.; Károly, D.; Orbulov, I. N. Notch (In)sensitivity of Aluminum Matrix Syntactic Foams. Materials. 2019, 12(4), 56–59. DOI: 10.3390/ma12040574..
  • Kannan, S.; Kishawy, H. A.; Pervaiz, S.; Thomas, K.; Karthikeyan, R.; Arunachalam, R. Machining of Novel AA7075 Foams Containing Thin-Walled Ceramic Bubbles. Mater. Manuf. Processes. 2020, 35(16), 1812–1821. DOI: 10.1080/10426914.2020.1802038..
  • Rajak, D. K.; Mahajan, N. N.; Das, S. Fabrication and Investigation of Influence of CaCO 3 as Foaming Agent on Al-SiCp Foam. Mater. Manuf. Processes. 2019, 34(4), 379–384. DOI: 10.1080/10426914.2018.1532093..
  • Rajak, D. K.; Kumaraswamidhas, L. A.; Das, S. Investigation and Characterisation of Aluminium Alloy Foams with TiH 2 as a Foaming Agent. Mater. Sci. Technol. 2016, 32(13), 1338–1345. DOI: 10.1080/02670836.2015.1123846..
  • Cao, H.; Wang, C.; Che, J.; Luo, Z.; Wang, L.; Xiao, L.; Wang, J.; Hu, T. Effect of Flow State of Pure Aluminum and A380 Alloy on Porosity of High Pressure Die Castings. Materials. 2019, 12(24), 4219. DOI: 10.3390/ma12244219..
  • Sahu, S.; Ansari, M. Z.; Mondal, D. P.; Cho, C. Quasi-Static Compressive Behaviour of Aluminium Cenosphere Syntactic Foams. Mater. Sci. Technol. 2019, 35(7), 856–864. DOI: 10.1080/02670836.2019.1593670.
  • Pandey, A.; Birla, S.; Mondal, D. P.; Das, S.; Ch, V. A. N. Compressive Deformation Behavior and Strain Rate Sensitivity of Al-Cenosphere Hybrid Foam with Mono-Modal, Bi-Modal and Tri-Modal Cenosphere Size Distribution. Mater. Charact. 2018, 144(July), 563–574. DOI: 10.1016/j.matchar.2018.08.011.
  • Su, M.; Wang, H.; Hao, H. Compressive Properties of Aluminum Matrix Syntactic Foams Prepared by Stir Casting Method. Adv. Eng. Mater. 2019, 21(8), 1900183. DOI: 10.1002/adem.201900183.
  • Katona, B.; Szlancsik, A.; Tábi, T.; Orbulov, I. N. Compressive Characteristics and Low Frequency Damping of Aluminium Matrix Syntactic Foams. Mater. Sci. Eng. A. 2019, 739, 140–148. DOI: 10.1016/j.msea.2018.10.014.
  • Mondal, D. P.; Das, S.; Ramakrishnan, N.; Uday Bhasker, K. Cenosphere Filled Aluminum Syntactic Foam Made through Stir-Casting Technique. Compos. Part A Appl. Sci. Manuf. 2009, 40(3), 279–288. DOI: 10.1016/j.compositesa.2008.12.006.
  • Orbulov, I. N.; Kemény, A.; Filep, Á.; Gácsi, Z. Compressive Characteristics of Bimodal Aluminium Matrix Syntactic Foams. Compos. A. 2019, 124(April), 105479. DOI: 10.1016/j.compositesa.2019.105479.
  • Sahu, S.; Ansari, M. Z.; Mondal, D. P. Microstructure and Compressive Deformation Behavior of 2014 Aluminium Cenosphere Syntactic Foam Made through Stircasting Technique. Mater. Today Proc. 2020, 25(4), 785–788. DOI: 10.1016/j.matpr.2019.09.019..
  • Orbulov, I. N.; Szlancsik, A.; Kemény, A.; Kincses, D. Compressive Mechanical Properties of Low-Cost, Aluminium Matrix Syntactic Foams. Compos. Part A Appl. Sci. Manuf. 2020, 135(April), 105923. DOI: 10.1016/j.compositesa.2020.105923.
  • Al-Sahlani, K.; Broxtermann, S.; Lell, D.; Fiedler, T. Effects of Particle Size on the Microstructure and Mechanical Properties of Expanded Glass-Metal Syntactic Foams. Mater. Sci. Eng. A. 2018, 728, 80–87. DOI: 10.1016/j.msea.2018.04.103.
  • Lin, Y.; Zhang, Q.; Wu, G. Interfacial Microstructure and Compressive Properties of Al–Mg Syntactic Foam Reinforced with Glass Cenospheres. J. Alloys Compd. 2016, 655, 301–308. DOI: 10.1016/j.jallcom.2015.09.175.
  • Manakari, V.; Parande, G.; Gupta, M. Effects of Hollow Fly-Ash Particles on the Properties of Magnesium Matrix Syntactic Foams: A Review. Mater. Perform. Charact. 2016, 5(1). DOI: 10.1520/MPC20150060. MPC20150060.
  • Feng, X.; Sun, Y.; Lu, Y.; He, J.; Liu, X.; Wan, S. Effect of the Strain Rate on the Damping and Mechanical Properties of a ZK60 Magnesium Alloy. Materials. 2020, 13(13), 2969. DOI: 10.3390/ma13132969..
  • Gupta, M.; Lai, M. O.; Saravanaranganathan, D. Synthesis, Microstructure and Properties Characterization of Disintegrated Melt Deposited Mg/SiC Composites. J. Mater. Sci. 2000, 35(9), 2155–2165. DOI: 10.1023/A:1004706321731..
  • Dziubińska, A.; Gontarz, A.; Dziubiński, M.; Barszcz, M. The Forming of Magnesium Alloy Forgings for Aircraft and Automotive Applications. Adv. Sci. Technol. Res. J. 2016, 10(31), 158–168. DOI: 10.12913/22998624/64003..
  • Nguyen, Q. B.; Nai, M. L.; Nguyen, A. S.; Seetharaman, S.; Jayalakshmi, S.; Leong, E. W.; Gupta, M. Microstructure and Damping Characteristics of Mg and Its Composites Containing Metastable Al 85 Ti 15 Particle. J. Compos. Mater. 2016, 50(18), 2565–2573. DOI: 10.1177/0021998315608432..
  • Glinokrzemianowymi, Z. M.;. Problems Fabricating Cast Magnesium Matrix Composites with Aluminosilicate Cenospheres. Composit. Theory Pract. 2014, 4(14), 214–218.
  • Xiang, C.; Yang, Y.; Gupta, N. High Strain Rate Compressive Behavior of As-Cast and Heat Treated Magnesium-Rare Earth Alloy at Low Temperatures. J. Dyn. Behav. Mater. 2020, 6(2), 197–206. DOI: 10.1007/s40870-020-00238-8..
  • Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams. JOM. 2018, 70(7), 1319–1325. DOI: 10.1007/s11837-018-2886-0..
  • Suneesh, E.; Sivapragash, M. Comprehensive Studies on Processing and Characterization of Hybrid Magnesium Composites. Mater. Manuf. Processes. 2018, 33(12), 1324–1345. DOI: 10.1080/10426914.2018.1453155.
  • Dey, A.; Pandey, K. M. Characterization of Fly Ash and Its Reinforcement Effect on Metal Matrix Composites: A Review. Rev. Adv. Mater. Sci. 2016, 44, 168–181.
  • Shunmugasamy, V. C.; Mansoor, B.; Gupta, N. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications. JOM. 2016, 68(1), 279–287. DOI: 10.1007/s11837-015-1680-5.
  • Zhikang, J.; Sirong, Y.; Xiaoli, Y. Degradable Mg Alloy Composites Using Fly Ash Cenospheres. Sci. Eng. Compos. Mater. 2018, 25(6), 1115–1122. DOI: 10.1515/secm-2017-0243.
  • Rohatgi, P. K.; Daoud, A.; Schultz, B. F.; Puri, T. Composites : Part A Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites. Compos. A. 2009, 40(6–7), 883–896. DOI: 10.1016/j.compositesa.2009.04.014.
  • Anbuchezhiyan, G.; Mohan, B.; Sathianarayanan, D.; Muthuramalingam, T. Synthesis and Characterization of Hollow Glass Microspheres Reinforced Magnesium Alloy Matrix Syntactic Foam. J. Alloys Compd. 2017, 719, 125–132. DOI: 10.1016/j.jallcom.2017.05.153..
  • Akinwekomi, A. D.;. Microstructural Characterisation and Corrosion Behaviour of Microwave-Sintered Magnesium Alloy AZ61/Fly Ash Microspheres Syntactic Foams. Heliyon. 2019, 5(4), e01531. DOI: 10.1016/j.heliyon.2019.e01531..
  • Manakari, V.; Parande, G.; Doddamani, M.; Gupta, M. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons. Materials. 2017, 10(9), 997. DOI: 10.3390/ma10090997..
  • Daoud, A.; Abouelkhair, M.; Abdelaziz, M.; Fabrication, P. R. Microstructure and Compressive Behavior of ZC63 Mg–Microballoon Foam Composites. Compos. Sci. Technol. 2007, 67(9), 1842–1853. DOI: 10.1016/j.compscitech.2006.10.023..
  • Braszczyńska-Malik, K. N.; Kamieniak, J. AZ91 Magnesium Matrix Foam Composites with Fly Ash Cenospheres Fabricated by Negative Pressure Infiltration Technique. Mater. Charact. 2017, 128, 209–216. DOI: 10.1016/j.matchar.2017.04.005..
  • Nguyen, Q. B.; Sharon Nai, M. L.; Nguyen, A. S.; Seetharaman, S.; Wai Leong, E. W.; Gupta, M. Synthesis and Properties of Light Weight Magnesium–Cenosphere Composite. Mater. Sci. Technol. 2016, 32(9), 923–929. DOI: 10.1080/02670836.2015.1104017..
  • Manakari, V.; Parande, G.; Doddamani, M.; Gupta, M. Evaluation of Wear Resistance of Magnesium/Glass Microballoon Syntactic Foams for Engineering/Biomedical Applications. Ceram. Int. 2019, 45(7), 9302–9305. DOI: 10.1016/j.ceramint.2019.01.207..
  • Meenashisundaram, G. K.; Gupta, M. Emerging Environment Friendly, Magnesium-Based Composite Technology for Present and Future Generations. JOM. 2016, 68(7), 1890–1901. DOI: 10.1007/s11837-016-1823-3..
  • Liu, E.; Yu, S.-R.; Yuan, M.; Li, F.-G.; Zhao, Y.; Xiong, W. Effects of Semi-Solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites. Acta Metallurg. Sinica English Lett. 2018, 31(9), 953–962. DOI: 10.1007/s40195-018-0722-8..
  • Yusop, A. H.; Bakir, A. A.; Shaharom, N. A.; Abdul Kadir, M. R.; Hermawan, H. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review. Int. J. Biomater. 2012, 2012, 1–10. DOI: 10.1155/2012/641430..
  • Xue, X.; Wang, L.; Wang, M.; Lü, W.; Zhang, D. Manufacturing, Compressive Behaviour and Elastic Modulus of Ti Matrix Syntactic Foam Fabricated by Powder Metallurgy. Trans. Nonferrous Met. Soc. China. 2012, 22, s188–s192. DOI: 10.1016/S1003-6326(12)61707-5..
  • Kearns, V.;. Mechanical and Biological Properties of Titanium Syntactic Foams. In Ther Minerals Metals Mater. Soc. 2010, 2, 129–135.
  • Xue, X.; Zhao, Y. Ti Matrix Syntactic Foam Fabricated by Powder Metallurgy: Particle Breakage and Elastic Modulus. JOM. 2011, 63(2), 43–47. DOI: 10.1007/s11837-011-0027-0..
  • Mandal, D. P.; Majumdar, D. D.; Bharti, R. K.; Majumdar, J. D. Microstructural Characterisation and Property Evaluation of Titanium Cenosphere Syntactic Foam Developed by Powder Metallurgy Route. Powder Metall. 2015, 58(4), 289–299. DOI: 10.1179/1743290115Y.0000000012..
  • Wen, C.; Mabuchi, M.; Yamada, Y.; Shimojima, K.; Chino, Y.; Asahina, T. Processing of Biocompatible Porous Ti and Mg. Scr. Mater. 2001, 45(10), 1147–1153. DOI: 10.1016/S1359-6462(01)01132-0..
  • Mondal, D. P.; Datta Majumder, J.; Jha, N.; Badkul, A.; Das, S.; Patel, A.; Gupta, G. Titanium-Cenosphere Syntactic Foam Made through Powder Metallurgy Route. Mater. Des. 2012, 34, 82–89. DOI: 10.1016/j.matdes.2011.07.055..
  • Xie, C.; Li, H.; Yuan, B.; Gao, Y.; Luo, Z.; Ti, Z. M. 3 Sn–NiTi Syntactic Foams with Extremely High Specific Strength and Damping Capacity Fabricated by Pressure Melt Infiltration. ACS Appl. Mater. Interfaces. 2019, 11(31), 28043–28051. DOI: 10.1021/acsami.9b08145..
  • Mondal, D. P.; Dasgupta, R.; Barnwal, A. K.; Pandey, S.; Jain, H. Use of Cenosphere for Making Metal-Microspheres Syntactic Foam through Powder Metallurgy Route. Mater. Scie. Forum. 2015, 830831, 75–79. http://www.scientific.net/MSF.830-831.75
  • Heydari Astaraie, A.; Shahverdi, H. R.; Elahi, S. H. Compressive Behavior of Zn–22Al Closed-Cell Foams under Uniaxial Quasi-Static Loading. Trans. Nonferrous Met. Soc. China. 2015, 25(1), 162–169. DOI: 10.1016/S1003-6326(15)63591-9..
  • Park, J.; Howard, J. M.; Edery, A.; DeMay, M.; Wereley, N. Process Parameter Effects on Cellular Structured Materials Using Hollow Glass Spheres. Mater. Manuf. Processes. 2019, 34(9), 1026–1034. DOI: 10.1080/10426914.2019.1594256..
  • Islam, M. M.; Kim, H. S. Manufacture of Syntactic Foams: Pre-Mold Processing. Mater. Manuf. Processes. 2007, 22(1), 28–36. DOI: 10.1080/10426910601015857..
  • Daoud, A.;. Effect of Strain Rate on Compressive Properties of Novel Zn12Al Based Composite Foams Containing Hybrid Pores. Mater. Sci. Eng. A. 2009, 525(1–2), 7–17. DOI: 10.1016/j.msea.2009.05.038..
  • Liu, J.; Yu, S.; Zhu, X.; Wei, M.; Luo, Y.; Liu, Y. Correlation between Ceramic Additions and Compressive Properties of Zn–22Al Matrix Composite Foams. J. Alloys Compd. 2009, 476(1–2), 220–225. DOI: 10.1016/j.jallcom.2008.09.069..
  • Pan, L.; Yang, Y.; Ahsan, M. U.; Luong, D. D.; Gupta, N.; Kumar, A.; Rohatgi, P. K. Zn-Matrix Syntactic Foams: Effect of Heat Treatment on Microstructure and Compressive Properties. Mater. Sci. Eng. A. 2018, 731, 413–422. DOI: 10.1016/j.msea.2018.06.072..
  • Liu, J. A.; Yu, S. R.; Hu, Z. Q.; Liu, Y. H.; Zhu, X. Y. Deformation and Energy Absorption Characteristic of Al2O3f/Zn–Al Composite Foams during Compression. J. Alloys Compd. 2010, 506(2), 620–625. DOI: 10.1016/j.jallcom.2010.06.107..
  • Liu, J.; Yu, S.; Zhu, X.; Wei, M.; Luo, Y.; Liu, Y. The Compressive Properties of Closed-Cell Zn-22Al Foams. Mater. Lett. 2008, 62(4–5), 683–685. DOI: 10.1016/j.matlet.2007.06.032..
  • Broxtermann, S.; Vesenjak, M.; Krstulović-Opara, L.; Fiedler, T. Quasi Static and Dynamic Compression of Zinc Syntactic Foams. J. Alloys Compd. 2018, 768, 962–969. DOI: 10.1016/j.jallcom.2018.07.215..
  • Breunig, P.; Damodaran, V.; Shahapurkar, K.; Waddar, S.; Doddamani, M.; Jeyaraj, P.; Prabhakar, P. Dynamic Impact Behavior of Syntactic Foam Core Sandwich Composites. J. Compos. Mater. 2020, 54(4), 535–547. DOI: 10.1177/0021998319885000..
  • Luong, D.; Lehmhus, D.; Gupta, N.; Weise, J.; Bayoumi, M. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams. Materials. 2016, 9(2), 115. DOI: 10.3390/ma9020115..
  • Lehmhus, D.; Weise, J.; Szlancsik, A.; Orbulov, I. N. Fracture Toughness of Hollow Glass Microsphere-Filled Iron Matrix Syntactic Foams. Materials. 2020, 13(11), 2566. DOI: 10.3390/ma13112566..
  • Cho, Y. J.; Lee, T. S.; Lee, W.; Lee, Y. C.; Park, Y. H. Preparation and Characterization of Iron Matrix Syntactic Foams with Glass Microspheres via Powder Metallurgy. Metals Mater. Int. 2019, 25(3), 794–804. DOI: 10.1007/s12540-018-00215-w..
  • Weise, J.; Lehmhus, D.; Baumeister, J.; Kun, R.; Bayoumi, M.; Busse, M. Production and Properties of 316L Stainless Steel Cellular Materials and Syntactic Foams. Steel Res. Int. 2014, 85(3), 486–497. DOI: 10.1002/srin.201300131..
  • Kang, T.-H.; Kim, K.-S.; Yun, J.-Y.; Lee, M.-J.; Lee, K.-A. Fabrication and Mechanical Properties of Open‐Cell Austenitic Stainless Steel Foam by Electrostatic Powder Spraying Process. Adv. Eng. Mater. 2020, 22(8), 1901566. DOI: 10.1002/adem.201901566..
  • Peroni, L.; Scapin, M.; Lehmhus, D.; Baumeister, J.; Busse, M.; Avalle, M.; Weise, J. High Strain Rate Tensile and Compressive Testing and Performance of Mesoporous Invar (Feni36) Matrix Syntactic Foams Produced by Feedstock Extrusion. Adv. Eng. Mater. 2017, 19(11), 1–11. DOI: 10.1002/adem.201600474..
  • Krupp, U.; Poltersdorf, P.; Nesic, S.; Baumeister, J.; Weise, J. Monotonic and Cyclic Deformation Behaviour of Fe-36Ni (INVAR) Syntactic Foam. Mater. Sci. Eng. Technol. 2014, 45(12), 1092–1098. DOI: 10.1002/mawe.201400357..
  • Ghali, S.; Eissa, M. Influence of Different Parameters on Compression Strength of Foam Steel Produced by Slip Reaction Foam Sintering. Ironmaking Steelmaking. 2018, 45(1), 90–97. DOI: 10.1080/03019233.2016.1242929..
  • Sharma, V. M.; Pal, S. K.; Racherla, V. A New Sintering Method for Fabrication of Open-Cell Metal Foam Parts. Mater. Manuf. Processes. 2020, 35(15), 1717–1726. DOI: 10.1080/10426914.2020.1784933..
  • Luong, D. D.; Shunmugasamy, V. C.; Gupta, N.; Lehmhus, D.; Weise, J.; Baumeister, J. Quasi-Static and High Strain Rates Compressive Response of Iron and Invar Matrix Syntactic Foams. Mater. Des. 2015, 66, 516–531. DOI: 10.1016/j.matdes.2014.07.030..
  • Peroni, L.; Scapin, M.; Fichera, C.; Lehmhus, D.; Weise, J.; Baumeister, J.; Avalle, M. Investigation of the Mechanical Behaviour of AISI 316L Stainless Steel Syntactic Foams at Different Strain-Rates. Compos. B Eng. 2014, 66, 430–442. DOI: 10.1016/j.compositesb.2014.06.001..
  • Yang, Q.; Yu, B.; Hu, H.; Hu, G.; Miao, Z.; Wei, Y.; Sun, W. Melt Flow and Solidification during Infiltration in Making Steel Matrix Syntactic Foams. Mater. Sci. Technol. 2019, 35(15), 1831–1839. DOI: 10.1080/02670836.2019.1650444..
  • Castro, G.; Nutt, S. R. Synthesis of Syntactic Steel Foam Using Mechanical Pressure Infiltration. Mater. Sci. Eng. A. 2012, 535, 274–280. DOI: 10.1016/j.msea.2011.12.084..
  • Peroni, L.; Scapin, M.; Avalle, M.; Weise, J.; Lehmhus, D.; Baumeister, J.; Busse, M. Syntactic Iron Foams - on Deformation Mechanisms and Strain-Rate Dependence of Compressive Properties. Adv. Eng. Mater. 2012, 14(10), 909–918. DOI: 10.1002/adem.201200160..
  • Weise, J.; Salk, N.; Jehring, U.; Baumeister, J.; Lehmhus, D.; Bayoumi, M. A. Influence of Powder Size on Production Parameters and Properties of Syntactic Invar Foams Produced by Means of Metal Powder Injection Moulding. Adv. Eng. Mater. 2013, 15(3), 118–122. DOI: 10.1002/adem.201200129..
  • Varila, T.; Romar, H.; Lassi, U. Catalytic Effect of Transition Metals (Copper, Iron, and Nickel) on the Foaming and Properties of Sugar-Based Carbon Foams. Top. Catal. 2019, 62(7–11), 764–772. DOI: 10.1007/s11244-019-01171-4..
  • Shishkin, A.; Drozdova, M.; Kozlov, V.; Hussainova, I.; Lehmhus, D. Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams. Metals. 2017, 7(1), 16. DOI: 10.3390/met7010016..
  • El-Hadek, M. A.; Kaytbay, S. Mechanical and Physical Characterization of Copper Foam. Int. J. Mech. Mater. Des. 2008, 4(1), 63–69. DOI: 10.1007/s10999-008-9058-2..
  • Zhang, X.; Wu, Y.; Tang, L.; Liu, Z.; Jiang, Z.; Liu, Y.; Xi, H. Modeling and Computing Parameters of Three-Dimensional Voronoi Models in Nonlinear Finite Element Simulation of Closed-Cell Metallic Foams. Mech. Adv. Mat. Struct. 2018, 25(15–16), 1265–1275. DOI: 10.1080/15376494.2016.1190426..
  • Linn, R. V.; Oliveira, B. F. Mechanical Characterization of Axially Compressed Metallic Foams Containing Periodic Rectangular Holes with FEM Analysis and Analytical Considerations. Mech. Adv. Mat. Struct. 2020, 1–8. DOI: 10.1080/15376494.2020.1846098..
  • Spratt, M.; Newkirk, J. W. Optimization and Characterization of Novel Injection Molding Process for Metal Matrix Syntactic Foams. SN Appl. Sci. 2020, 2(12), 2048. DOI: 10.1007/s42452-020-03791-y..
  • Weise, J.; Hilbers, J.; Handels, F.; Lehmhus, D.; Busse, M.; Heuser, M. New Core Technology for Light Metal Casting. Adv. Eng. Mater. 2019, 21(4), 1–9. DOI: 10.1002/adem.201800608..
  • Rohatgi, P. K.; Ajay Kumar, P.; Chelliah, N. M.; Rajan, T. P. D. Solidification Processing of Cast Metal Matrix Composites over the Last 50 Years and Opportunities for the Future. JOM. 2020, 72(8), 2912–2926. DOI: 10.1007/s11837-020-04253-x..
  • Soni, B.; Biswas, S. Effects of Cell Parameters at Low Strain Rates on the Mechanical Properties of Metallic Foams of Al and 7075-T6 Alloy Processed by Pressurized Infiltration Casting Method. J. Mater. Res. 2018, 33(20), 3418–3429. DOI: 10.1557/jmr.2018.281..
  • Kumari, S. S. S.; Pillai, R. M.; Pai, B. C. Role of Calcium in Aluminium Based Alloys and Composites. Int. Mater. Rev. 2005, 50(4), 216–238. DOI: 10.1179/174328005X14366..
  • Kalra, C. S.; Kumar, V.; Manna, A. The Wear Behavior of Al/(Al 2 O 3 + SiC + C) Hybrid Composites Fabricated Stir Casting Assisted Squeeze. Part. Sci. Technol. 2019, 37(3), 303–313. DOI: 10.1080/02726351.2017.1369475..
  • Wang, S. Y.; Tang, Q.; Li, D. J.; Zou, J. X.; Zeng, X. Q.; Ouyang, Q. B.; Ding, W. J. The Hot Workability of SiC P/2024 Al Composite by Stir Casting. Mater. Manuf. Processes. 2015, 30(5), 624–630. DOI: 10.1080/10426914.2014.952027..
  • Madhusudan, S.; Sarcar, M. M. M.; Bhargava, N. R. M. R. Microstructure and Mechanical Behavior Assessment of Al–Cu Composites Fabricated through Stir Casting. Part. Sci. Technol. 2018, 36(2), 178–184. DOI: 10.1080/02726351.2016.1240125..
  • Dehnavi, A.; Ebrahimi, G. R.; Golestanipour, M. Effect of SiC Particles on Hot Deformation Behavior of Closed-Cell Al/SiCp Composite Foams. J. Braz. Soc. Mech. Sci. Eng. 2020, 42(11), 554. DOI: 10.1007/s40430-020-02625-7..
  • Kumar, A.; Rana, R. S.; Purohit, R. Effect of Stirrer Design on Microstructure of MWCNT and Al Alloy by Stir Casting Process. Adv. Mater. Process. Technol. 2020, 6(2), 320–327. DOI: 10.1080/2374068X.2020.1731156..
  • Praveen Kumar, T. N.; Venkateswaran, S.; Seetharamu, S. Effect of Grain Size of Calcium Carbonate Foaming Agent on Physical Properties of Eutectic Al–Si Alloy Closed Cell Foam. Transactions of the Indian Institute of Metals. 2015, 68(S1), 109–112. DOI: 10.1007/s12666-015-0631-8..
  • Sutarno,; Nugraha, B.; Kusharjanto. Optimization of Calcium Carbonate Content on Synthesis of Aluminum Foam and Its Compressive Strength Characteristic. In AIP Conference Proceedings; West Java, Indonesia 2017,; Vol. 1805, p 060003. DOI:10.1063/1.4974439.
  • Birla, S.; Mondal, D. P.; Das, S.; Prasanth, N.; Jha, A. K.; Venkat, A. N. C. Compressive Deformation Behavior of Highly Porous AA2014-Cenosphere Closed Cell Hybrid Foam Prepared Using CaH2 as Foaming Agent: Comparison with Aluminum Foam and Syntactic Foam. Transactions of the Indian Institute of Metals. 2017, 70(7), 1827–1840. DOI: 10.1007/s12666-016-0984-7..
  • Sarajan, Z.; Sedigh, M. Influences of Titanium Hydride (Tih2) Content and Holding Temperature in Foamed Pure Aluminum. Mater. Manuf. Processes. 2009, 24(5), 590–593. DOI: 10.1080/10426910902748016..
  • Zhang, J.; Zhao, G.; Lu, T.; He, S. Strain Rate Behavior of Closed-Cell Al-Si-Ti Foams: Experiment and Numerical Modeling. Mech. Adv. Mat. Struct. 2015, 22(7), 556–563. DOI: 10.1080/15376494.2013.828813..
  • Bisht, A.; Gangil, B.; Patel, V. K. Selection of Blowing Agent for Metal Foam Production: A Review. J. Met. Mater. Miner. 2020, 30(1), 1–10. DOI: 10.14456/jmmm.2020.1..
  • Miyoshi, T.; Itoh, M.; Akiyama, S.; Kitahara, A. Aluminum Foam, “ALPORAS”: The Production Process, Properties and Applications. Mater. Res. Soc. Symp. Proc. 1998, 521(4), 133–137. DOI: 10.1557/proc-521-133..
  • Banhart, J.;. Manufacturing Routes for Metallic Foams. JOM. 2000, 52(12), 22–27. DOI: 10.1007/s11837-000-0062-8..
  • Bhat, P.; Zegeye, E.; Ghamsari, A. K.; Woldesenbet, E. Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique. Jom. 2015, 67(12), 2848–2854. DOI: 10.1007/s11837-014-1151-4..
  • Goel, M. D.; Mondal, D. P.; Yadav, M. S.; Gupta, S. K. Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Aluminum Cenosphere Syntactic Foam. Mater. Sci. Eng. A. 2014, 590, 406–415. DOI: 10.1016/j.msea.2013.10.048..
  • Orbulov, I. N.; Dobránszky, J. Producing Metal Matrix Syntactic Foams by Pressure Infiltration. Period. Polytech. Mech. Eng. 2008, 52(1), 35–42. DOI: 10.3311/pp.me.2008-1.06..
  • Posada, V. M.; Ramírez, J.; Allain, J. P.; Shetty, A. R.; Fernández-Morales, P. Synthesis and Properties of Mg-Based Foams by Infiltration Casting without Protective Cover Gas. J. Mater. Eng. Perform. 2020, 29(1), 681–690. DOI: 10.1007/s11665-020-04566-7..
  • Kádár, C.; Máthis, K.; Knapek, M.; Chmelík, F. The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression. Materials. 2017, 10(2), 196. DOI: 10.3390/ma10020196..
  • Wright, A.; Kennedy, A. The Processing and Properties of Syntactic Al Foams Containing Low Cost Expanded Glass Particles. Adv. Eng. Mater. 2017, 19(11), 1–6. DOI: 10.1002/adem.201600467..
  • S-de-la-muela, A. M.; Cambronero, L. E. G.; Ruiz-Román, J. M. Molten Metal Infiltration Methods to Process Metal Matrix Syntactic Foams. Metals. 2020, 10(1), 149. DOI: 10.3390/met10010149..
  • Rocha Rivero, G. A.; Schultz, B. F.; Ferguson, J. B.; Gupta, N.; Rohatgi, P. K. Compressive Properties of Al-A206/SiC and Mg-AZ91/SiC Syntactic Foams. J. Mater. Res. 2013, 28(17), 2426–2435. DOI: 10.1557/jmr.2013.176..
  • Arunachalam, R.; Krishnan, P. K. Compressive Response of Aluminum Metal Matrix Composites. In Reference Module in Materials Science and Materials Engineering. Elsevier. 2021, 1–21. DOI: 10.1016/B978-0-12-803581-8.11818-1..
  • Etemadi, R.; Wang, B.; Pillai, K. M.; Niroumand, B.; Omrani, E.; Rohatgi, P. Pressure Infiltration Processes to Synthesize Metal Matrix Composites–A Review of Metal Matrix Composites, the Technology and Process Simulation. Mater. Manuf. Processes. 2018, 33(12), 1261–1290. DOI: 10.1080/10426914.2017.1328122..
  • Májlinger, K.; Orbulov, I. N. Characteristic Compressive Properties of Hybrid Metal Matrix Syntactic Foams. Mater. Sci. Eng. A. 2014, January 2018, 606, 248–256. DOI: 10.1016/j.msea.2014.03.100.
  • Korpe, N. O.; Ozkan, E.; Tasci, U. Production of Aluminium–Fly Ash Particulate Composite by Powder Metallurgy Technique Using Boric Acid as Foaming Agent. Adv. Mater. Process. Technol. 2017, 3(1), 145–154. DOI: 10.1080/2374068X.2016.1254004.
  • Azarniya, A.; Azarniya, A.; Safavi, M. S.; Farshbaf Ahmadipour, M.; Esmaeeli Seraji, M.; Sovizi, S.; Saqaei, M.; Yamanoglu, R.; Soltaninejad, M.; Madaah Hosseini, H. R.;, et al. Physicomechanical Properties of Porous Materials by Spark Plasma Sintering. Critic. Rev. Solid State Mater. Sci. 2020, 45(1), 22–65. DOI: 10.1080/10408436.2018.1532393.
  • Gauthier, M.; Lefebvre, L.; Thomas, Y.; Bureau, M. N. Production of Metallic Foams Having Open Porosity Using a Powder Metallurgy Approach. Mater. Manuf. Processes. 2004, 19(5), 793–811. DOI: 10.1081/AMP-200030539.
  • Davari, H. R.; Gholamzadeh, H.; Dehghan, S. A.; Paydar, M. H. Effect of Sintering Parameters (Time and Temperature) upon the Fabrication Process of Organic Binder-Based Metallic Hollow Sphere. Powder Metall. 2017, 60(5), 363–370. DOI: 10.1080/00325899.2017.1355424.
  • Mishra, R. R.; Sharma, A. K. A. Review of Research Trends in Microwave Processing of Metal-Based Materials and Opportunities in Microwave Metal Casting. Critic. Rev. Solid State Mater. Sci. 2016, 41(3), 217–255. DOI: 10.1080/10408436.2016.1142421.
  • Ullen, N. B.;. Characterization of Machinability of Sintered Steel Foams Having Different Porosities during Drilling Operations. Mach. Sci. Technol. 2020, 1–31. DOI: 10.1080/10910344.2020.1815051.
  • Vogiatzis, C. A.; Skolianos, S. M. Electrochemical Evaluation of Sintered Aluminium–Ceramic Cenospheres Composites. Corros. Eng. Sci. Technol. 2017, 52(2), 90–98. DOI: 10.1080/1478422X.2016.1211862.
  • Sankaranarayanan, S.; Nguyen, Q. B.; Shabadi, R.; Almajid, A. H.; Gupta, M. Powder Metallurgy Hollow Fly Ash Cenospheres’ Particles Reinforced Magnesium Composites. Powder Metall. 2016, 59(3), 188–196. DOI: 10.1080/00325899.2016.1139339.
  • Mu, Y. L.; Yao, G. C.; Luo, H. J. Compressive Properties of Closed Cell Al Alloy–Fly Ash Particle Composite Foams. Mater. Sci. Technol. 2011, 27(1), 434–436. DOI: 10.1179/026708309X12506933873305.
  • Santa Maria, J. A.; Schultz, B. F.; Ferguson, J. B.; Gupta, N.; Rohatgi, P. K. Effect of Hollow Sphere Size and Size Distribution on the Quasi-Static and High Strain Rate Compressive Properties of Al-A380-Al2O3 Syntactic Foams. J. Mater. Sci. 2014, 49(3), 1267–1278. DOI: 10.1007/s10853-013-7810-y.
  • Newsome, D.; Schultz, B.; Ferguson, J.; Rohatgi, P. Synthesis and Quasi-Static Compressive Properties of Mg-AZ91D-Al2O3 Syntactic Foams. Materials. 2015, 8(9), 6085–6095. DOI: 10.3390/ma8095292.
  • Linul, E.; Lell, D.; Movahedi, N.; Codrean, C.; Fiedler, T. Compressive Properties of Zinc Syntactic Foams at Elevated Temperatures. Compos. B Eng. 2019, December 2018, 167, 122–134. DOI: 10.1016/j.compositesb.2018.12.019.
  • Sazegaran, H.; Kiani-Rashid, A.-R.; Khaki, J. V. Effects of Sphere Size on the Microstructure and Mechanical Properties of Ductile Iron–Steel Hollow Sphere Syntactic Foams. Int. J. Miner. Metall. Mater. 2016, 23(6), 676–682. DOI: 10.1007/s12613-016-1280-6.
  • Akinwekomi, A. D.; Adebisi, J. A.; Adediran, A. A. Compressive Characteristics of Aluminum-Fly Ash Syntactic Foams Processed by Microwave Sintering. Metall. Mater. Trans. A. 2019, 50(9), 4257–4260. DOI: 10.1007/s11661-019-05347-1.
  • Bleistein, T.; Jung, A.; Diebels, S. A Microsphere-Based Material Model for Open Cell Metal Foams. Continuum Mechan. Thermodynam. 2020, 32(1), 255–267. DOI: 10.1007/s00161-019-00799-7.
  • Ozmat, B.; Leyda, B.; Benson, B. Thermal Applications of Open-Cell Metal Foams. Mater. Manuf. Processes. 2004, 19(5), 839–862. DOI: 10.1081/LMMP-200030568.
  • Taha, M. A.;. Industrialization of Cast Aluminum Matrix Composites (Amccs). Mater. Manuf. Processes. 2001, 16(5), 619–641. DOI: 10.1081/AMP-100108625.
  • Han, X.; Wang, Q.; Park, Y.; T’Joen, C.; Sommers, A.; Jacobi, A. A. Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks. Heat Transfer Eng. 2012, 33(12), 991–1009. DOI: 10.1080/01457632.2012.659613.
  • Engineered Syntactic Systems https://esyntactic.com/acoustic-properties-of-syntactic-foam-part-2/( accessed Apr 21, 2021).
  • Chen, K.; Guo, L.; Wang, H. A. Review on Thermal Application of Metal Foam. Sci. China Technol. Sci. 2020, 63(12), 2469–2490. DOI: 10.1007/s11431-020-1637-3.
  • Courtney, W. A.; Oyadiji, S. O. Characteristics and Potential Applications of a Novel Shock Absorbing Elastomeric Composite for Enhanced Crashworthiness. Int. J. Crashworthiness. 2000, 5(4), 469–490. DOI: 10.1533/cras.2000.0155.
  • Vemoori, R.; Gurram, U.; Khanra, A. K. Fabrication and Properties Evaluation of Alumina-Based Open-Cell Foams. Transactions of the Indian Institute of Metals. 2019, 72(6), 1679–1682. DOI: 10.1007/s12666-019-01578-3.
  • Ashford, P.;. The Future for Structural Foams. Mater. Technol. 2006, 21(2), 105–111. DOI: 10.1179/mte.2006.21.2.105.
  • Barletta, M.; Guarino, S.; Montanari, R.; Tagliaferri, V. Metal Foams for Structural Applications: Design and Manufacturing. Int. J. Comput. Integr. Manuf. 2007, 20(5), 497–504. DOI: 10.1080/09511920601160197.
  • Karthikeyan, C. S.; Sankaran, S.; Kishore. Flexural Behaviour of Fibre-Reinforced Syntactic Foams. Macromol. Mater. Eng. 2005, 290(1), 60–65. DOI: 10.1002/mame.200400177.
  • Gupta, N.; Pinisetty, D. A. Review of Thermal Conductivity of Polymer Matrix Syntactic Foams—Effect of Hollow Particle Wall Thickness and Volume Fraction. JOM. 2013, 65(2), 234–245. DOI: 10.1007/s11837-012-0512-0.
  • Zegeye, E.; Wicker, S.; Woldesenbet, E. AC and DC Electrical Properties of Graphene Nanoplatelets Reinforced Epoxy Syntactic Foam. Mater. Res. Express. 2018, 5(4), 045605. DOI: 10.1088/2053-1591/aabbfd.
  • Wu, X.; Gao, Y.; Wang, Y.; Fan, R.; Ali, Z.; Yu, J.; Yang, K.; Sun, K.; Li, X.; Lei, Y.;, et al. Recent Developments on Epoxy-Based Syntactic Foams for Deep Sea Exploration. J. Mater. Sci. 2021, 56(3), 2037–2076. DOI: 10.1007/s10853-020-05420-w.
  • Labella, M.; Shunmugasamy, V. C.; Strbik, O. M.; Gupta, N. Compressive and Thermal Characterization of Syntactic Foams Containing Hollow Silicon Carbide Particles with Porous Shell. J. Appl. Polym. Sci. 2014, 131(17). DOI: 10.1002/app.40689.
  • Ding, J.; Ye, F.; Liu, Q.; Yang, C.; Gao, Y.; Zhang, B. Co-Continuous Hollow Glass Microspheres/Epoxy Resin Syntactic Foam Prepared by Vacuum Resin Transfer Molding. J. Reinf. Plast. Compos. 2019, 38(19–20), 896–909. DOI: 10.1177/0731684419857173.
  • Rivero, G. A. R.; Rohatgi, P. K. Applications of Metal Matrix Syntactic Foams. In Metal Matrix Syntactic Foams Processing, Microstructure, Properties and Applications; DEStech Publications, Inc: USA, 2015; pp 327–345.
  • Erdem, O.;. The Development and Applications of Powder Metallurgy Manufacturing Methods in Automotive Industry. Int. J. Eng. Res. Develop. 2017, 9(3), 100–112. DOI: 10.29137/umagd.349955.
  • Banhart, J.;. Properties and Applications of Cast Aluminum Sponges. Adv. Eng. Mater. 2000, 2(4), 188–191. DOI: 10.1002/(SICI)1527-2648(200004)2:4<88::aid-adem188>3.0.CO;2-G.
  • Bolat, C.; Akgun, I. C.; Goksenli, A. On the Way to Real Applications: Aluminum Matrix Syntactic Foams. Eur. Mech. Sci. 2020, 4(3), 131–141. DOI: 10.26701/ems.703619.
  • Fuganti, A.; Lorenzi, L.; Grønsund, A.; Langseth, M. Aluminum Foam for Automotive Applications. Adv. Eng. Mater. 2000, 2(4), 200–204. DOI: 10.1002/(SICI)1527-2648(200004)2:4<200::aid-adem200>3.0.CO;2-2.
  • Hanssen, A. G.; Stöbener, K.; Rausch, G.; Langseth, M.; Keller, H. Optimisation of Energy Absorption of an A-Pillar by Metal Foam Insert. Int. J. Crashworthiness. 2006, 11(3), 231–242. DOI: 10.1533/ijcr.2005.0396.
  • Niebylski, L. M.; Fanning, R. J. Metal Foams as Energy Absorbers for Automobile Bumpers. SAE Tech. Papers. 1972, 1676–1682. DOI: 10.4271/720490.
  • García-Moreno, F.;. Commercial Applications of Metal Foams: Their Properties and Production. Materials. 2016, 9(2), 85. DOI: 10.3390/ma9020085.
  • Woldesenbet, E.; Mylavarapu, P. Determination of Dynamic Modulus of Syntactic and Particulate Foams by a Non-Destructive Approach. Strain. 2011, 47(1), 29–36. DOI: 10.1111/j.1475-1305.2008.00513.x.
  • Afolabi, L. O.; Ariff, Z. M.; Hashim, S. F. S.; Alomayri, T.; Mahzan, S.; Kamarudin, K.-A.; Muhammad, I. D. Syntactic Foams Formulations, Production Techniques, and Industry Applications: A Review. J. Mater. Res. Technol. 2020, 9(5), 10698–10718. DOI: 10.1016/j.jmrt.2020.07.074.
  • Jhaver, R.; Tippur, H. Characterization and Modeling of Compression Behavior of Syntactic Foam-Filled Honeycombs. J. Reinf. Plast. Compos. 2010, 29(21), 3185–3196. DOI: 10.1177/0731684410369023.
  • Güden, M.; Canbaz, İ. The Effect of Cell Wall Material Strain and Strain-Rate Hardening Behaviour on the Dynamic Crush Response of an Aluminium Multi-Layered Corrugated Core. Int. J. Crashworthiness. 2021, 26(1), 38–52. DOI: 10.1080/13588265.2019.1682351.
  • Karthikeyan, C. S.; Sankaran, S.; Kishore. Investigation of Bending Modulus of Fiber-Reinforced Syntactic Foams for Sandwich and Structural Applications. Polym. Adv. Technol. 2007, 18(3), 254–256. DOI: 10.1002/pat.828.
  • Dittrich, B.; Wartig, K.-A.; Mülhaupt, R.; Schartel, B. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polymers. 2014, 6(11), 2875–2895. DOI: 10.3390/polym6112875.
  • Banhart, J.; Seeliger, H. W. Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications. Adv. Eng. Mater. 2008, 10(9), 793–802. DOI: 10.1002/adem.200800091.
  • Li, Z.; Yu, Q.; Zhao, X.; Yu, M.; Shi, P.; Yan, C. Crashworthiness and Lightweight Optimization to Applied Multiple Materials and Foam-Filled Front End Structure of Auto-Body. Adv. Mech. Eng. 2017, 9(8). DOI: 10.1177/1687814017702806. 168781401770280.
  • Gokhale, A.; Kumar, N.; Sudhakar, B.; Sahu, S.; Basumatary, H.; Dhara, S. Cellular Metals and Ceramics for Defence Applications. Defenc. Sci. J. 2011, 61(5), 567–575. DOI: 10.14429/dsj.61.640.
  • Cymat Technologies; Innovative Materials Technology Company https://www.cymat.com/( accessed Apr13,2021)
  • Marx, J.; Portanova, M.; Rabiei, A. Performance of Composite Metal Foam Armors against Various Threat Sizes. J. Compos. Sci. 2020, 4(4), 176. DOI: 10.3390/jcs4040176.
  • Rajak, D. K.; Gupta, M. An Insight Into Metal Based Foams. 1st. Advanced Structured Materials. Springer:Singapore. 2020. Vol. 145, pp 21-35. 10.1007/978-981-15-9069-6.
  • Im, H.; Roh, S. C.; Kim, C. K. Fabrication of Novel Polyurethane Elastomer Composites Containing Hollow Glass Microspheres and Their Underwater Applications. Ind. Eng. Chem. Res. 2011, 50(12), 7305–7312. DOI: 10.1021/ie102600q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.