272
Views
2
CrossRef citations to date
0
Altmetric
Research Article

3D Printing of Shrimp Derived Chitosan with HAp as a Bio-Composite Scaffold

ORCID Icon, , &
Pages 1257-1266 | Received 17 Jun 2021, Accepted 13 Aug 2021, Published online: 07 Sep 2021

References

  • Reitz, W. Bioceramics: Materials and Applications Edited by G. Fisher, A. Clare, and L. Hench. Mater. Manuf. Processes. 2007, 12(4), 743–744. DOI: 10.1080/10426919708935181.
  • Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Processes. 2021, 36(3), 257–280. DOI: 10.1080/10426914.2020.1819544.
  • Reiser, J.; Hartmaier, A. Elucidating the Dual Role of Grain Boundaries as Dislocation Sources and Obstacles and Its Impact on Toughness and Brittle-to-ductile Transition. Sci. Rep.- UK. 2020, 10(1), 1–18. DOI: 10.1038/s41598-020-59405-5.
  • Al-Amin, M.; Abdul Rani, A. M.; Abdu Aliyu, A. A.; Bryant, M. G.; Danish, M.; Ahmad, A. Bio-ceramic Coatings Adhesion and Roughness of Biomaterials through PM-EDM: A Comprehensive Review. Mater. Manuf. Processes. 2020, 35(11), 1157–1180. DOI: 10.1080/10426914.2020.1772483.
  • Liu, S.; Huang, D.; Hu, Y.; Zhang, J.; Chen, B.; Zhang, H.; Zhou, W.; Tong, R.; Li, Y.; Zhou, W. Sodium Alginate/collagen Composite Multiscale Porous Scaffolds Containing Poly (ε-caprolactone) Microspheres Fabricated Based on Additive Manufacturing Technology. RSC. Adv. 2020, 10(64), 39241–39250. DOI: 10.1039/D0RA04581K.
  • Ghosh, S.; Ghosh, S.; Pramanik, N. Bio-evaluation of Doxorubicin (Dox)-incorporated Hydroxyapatite (Hap)-chitosan (CS) Nanocomposite Triggered on Osteosarcoma Cells. Adv. Compos. Hybri. Mater. 2020, 3(3), 303–314. DOI: 10.1007/s42114-020-00154-4.
  • Ghiasi, B.; Sefidbakht, Y.; Mozaffari-Jovin, S.; Gharehcheloo, B.; Mehrarya, M.; Khodadadi, A.; Uskoković, V.; Ranaei Siadat, S. O.; Uskoković, V. Hydroxyapatite as a Biomaterial–a Gift that Keeps on Giving. Drug. Dev. Ind. Pharm. 2020, 46(7), 1035–1062. DOI: 10.1080/03639045.2020.1776321.
  • Ranjan, N.; Singh, R.; Ahuja, I. P. S.; Rahman, M.; Ramakrishna, S. PLA-HAp-CS-Based Biocompatible Scaffolds Prepared through Micro-Additive Manufacturing: A Review and Future Applications. 3D Print. Addit. Manuf. 2020, 209–229. DOI: 10.1007/978-981-15-5424-7_10.
  • Neacsu, I. A.; Serban, A. P.; Nicoara, A. I.; Trusca, R.; Ene, V. L.; Iordache, F. Biomimetic Composite Scaffold Based on Naturally Derived Biomaterials. Polymers. 2020, 12(5), 1161. DOI: 10.3390/polym12051161.
  • Zima, T.; Bataev, I.; Smirnov, A. Fabrication of Surface-modified One-dimensional Titania Nanostructures in the Presence of Chitosan. Mater. Manuf. Processes. 2014, 30(5), 611–615. DOI: 10.1080/10426914.2015.1004693.
  • Abate, K. M.; Nazir, A.; Yeh, Y. P.; Chen, J. E.; Jeng, J. Y. Design, Optimization, and Validation of Mechanical Properties of Different Cellular Structures for Biomedical Application. Int. J. Adv. Manuf. Tech. 2020, 106(3), 1253–1265. DOI: 10.1007/s00170-019-04671-5.
  • Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Processes. 2021, 36(3), 257–280. DOI: 10.1080/10426914.2020.1819544.
  • Liu, J.; Hu, H.; Li, P.; Shuai, C.; Peng, S. Fabrication and Characterization of Porous 45S5 Glass Scaffolds via Direct Selective Laser Sintering. Mater. Manuf. Processes. 2013, 28(6), 610–615. DOI: 10.1080/10426914.2012.736656.
  • C Feng, P.; Niu, M.; Gao, C.; Peng, S.; Shuai, C. A Novel Two-step Sintering for Nano-hydroxyapatite Scaffolds for Bone Tissue Engineering. Sci. Rep.- UK. 2014, 4(1), 1–10. DOI: 10.1038/srep05599.
  • Prakash, C.; Singh, S.; Pabla, B. S.; Sidhu, S. S.; Uddin, M. S. Bio-inspired Low Elastic Biodegradable Mg-Zn-Mn-Si-HA Alloy Fabricated by Spark Plasma Sintering. Mater. Manuf. Processes. 2019, 34(4), 357–368. DOI: 10.1080/10426914.2018.1512117.
  • Aliyu, A. A. A.; Abdul-Rani, A. M.; Ginta, T. L.; Rao, T. V. V. L. N.; Selvamurugan, N.; Roy, S. Hydroxyapatite Mixed-electro Discharge Formation of Bioceramic Lakargiite (Cazro3) on Zr–Cu–Ni–Ti–Be for Orthopedic Application. Mater. Manuf. Processes. 2018, 33(16), 1734–1744. DOI: 10.1080/10426914.2018.1512122.
  • Deng, J.; Li, P.; Gao, C.; Feng, P.; Shuai, C.; Peng, S. Bioactivity Improvement of Forsterite-based Scaffolds with nano-58S Bioactive Glass. Mater. Manuf. Processes. 2014, 29(7), 877–884. DOI: 10.1080/10426914.2014.921712.
  • Deepachitra, R.; Nigam, R.; Purohit, S. D.; Kumar, B. S.; Hemalatha, T.; Sastry, T. P. In Vitro Study of Hydroxyapatite Coatings on Fibrin Functionalized/pristine Graphene Oxide for Bone Grafting. Mater. Manuf. Processes. 2015, 30(6), 804–811. DOI: 10.1080/10426914.2014.994758.
  • Peng, H.; Wang, K.; Huang, Z. An Injection Molding Method to Prepare Chitosan-zinc Composite Material for Novel Biodegradable Flexible Implant Devices. Mater. Manuf. Processes. 2019, 34(3), 256–261. DOI: 10.1080/10426914.2018.1532580.
  • Kumari, S.; Rath, P. K. Extraction and Characterization of Chitin and Chitosan from (Labeo Rohit) Fish Scales. Procedia Mater. Sci. 2014, 6, 482–489. DOI: 10.1016/j.mspro.2014.07.062.
  • Ashassi-Sorkhabi, H.; Bagheri, R.; Rezaei-moghadam, B. Sonoelectrochemical Synthesis of ppy-MWCNTs-chitosan Nanocomposite Coatings: Characterization and Corrosion Behavior. J. Mater. Eng. Perform. 2015, 24(1), 385–392. DOI: 10.1007/s11665-014-1297-9.
  • Hariharan, K.; Chandrasekhara Sastry, C.; Padmanaban, M.; Gideon Ganesh, M. Experimental Investigation of Bioceramic (Hydroxyapatite and Yttrium Stabilized Zirconia) Composite on Ti6Al7Nb Alloy for Medical Implants. Mater. Manuf. Processes. 2020, 35(5), 521–530. DOI: 10.1080/10426914.2020.1711929.
  • Correia, R. N.; Magalhaes, M. C. F.; Marques, P. A. A. P.; Senos, A. M. R. Wet Synthesis and Characterization of Modified Hydroxyapatite Powders. J. Mater. Sci. Mater. Med. 1996, 7(8), 501–505. DOI: 10.1007/BF00705432.
  • Huang, Z.; Zhou, K.; Zhang, D. Porous Hydroxyapatite Scaffolds with Unidirectional Macrochannels Prepared via Ice/fiber-templated Method. Mater. Manuf. Processes. 2014, 29(1), 27–31. DOI: 10.1080/10426914.2013.840909.
  • Baji, A.; Wong, S. C.; Srivatsan, T. S.; Njus, G. O.; Mathur, G. Processing Methodologies for Polycaprolactone-hydroxyapatite Composites: A Review. Mater. Manuf. Processes. 2006, 21(2), 211–218. DOI: 10.1081/AMP-200068681.
  • Nguyen, N. T.; Nguyen, B. H.; Ba, D. T.; Pham, D. G.; Van Khai, T.; Nguyen, L. T.; Tran, L. D. Microwave-assisted Synthesis of Silver Nanoparticles Using Chitosan: A Novel Approach. Mater. Manuf. Processes. 2014, 29(4), 418–421. DOI: 10.1080/10426914.2014.892982.
  • Zhou, W. Y.; Lee, S. H.; Wang, M.; Cheung, W. L.; Ip, W. Y. Selective Laser Sintering of Porous Tissue Engineering Scaffolds from Poly (L-lactide)/carbonated Hydroxyapatite Nanocomposite Microspheres. J. Mater. Sci. Mater. Med. 2008, 19(7), 2535–2540. DOI: 10.1007/s10856-007-3089-3.
  • Gogheri, M. S.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H. R.; Ghayour, H.; Rafiei, M. In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone–Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications. J. Mater. Eng. Perform. 2020, 29(9), 6053–6065. DOI: 10.1007/s11665-020-04952-1.
  • Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K. M. Preparation and Characterization of Thermally Stable ABS/HDPE Blend for Fused Filament Fabrication. Mater. Manuf. Processes. 2020, 35(2), 230–240. DOI: 10.1080/10426914.2019.1692355.
  • Grigolato, L.; Filippi, S.; Cantarella, D.; Lione, R.; Moon, W.; Rosso, S.; Savio, G. Concept Selection and Interactive Design of an Orthodontic Functional Appliance. Int. J. Interact. Des. Manuf. 2020, 1–6. DOI: 10.1007/s12008-020-00743-z.
  • Sahu, K. K.; Modi, Y. K. Investigation on Dimensional Accuracy, Compressive Strength and Measured Porosity of Additively Manufactured Calcium Sulphate Porous Bone Scaffolds. Mater. Technol. 2020, 1–12. DOI: 10.1080/10667857.2020.1774728.
  • Wang, X.; Zeng, D.; Weng, W.; Huang, Q.; Zhang, X.; Wen, J.; Jiang, X. Alendronate Delivery on Amino Modified Mesoporous Bioactive Glass Scaffolds to Enhance Bone Regeneration in Osteoporosis Rats. Artif. Cells. Nanomed. Biotechnol. 2018, 46(2), 171–181. DOI: 10.1080/21691401.2018.1453825.
  • Marrese, M.; Guarino, V.; Ambrosio, L. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. J. Funct. Biomater. 2017, 8(1), 7. DOI: 10.3390/jfb8010007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.