410
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On the machinability of selective laser melted duplex stainless steels

, &
Pages 1446-1462 | Received 31 Mar 2021, Accepted 03 Oct 2021, Published online: 12 Nov 2021

References

  • Wen, J.-H.; Zhang, L.-J.; Ning, J.; Xue, F.; Lei, X.-W.; Zhang, J.-X.; Na, S.-J. Laser Additively Manufactured Intensive Dual-phase Steels and Their Microstructures, Properties and Corrosion Resistance. Mater. Des. 2020, 192, 108710. DOI: 10.1016/j.matdes.2020.108710.
  • Zhang, Y.; Cheng, F.; Wu, S. Improvement of Pitting Corrosion Resistance of Wire Arc Additive Manufactured Duplex Stainless Steel through Post-manufacturing Heat-treatment. Mater. Charact. 2021, 171, 110743. DOI: 10.1016/j.matchar.2020.110743.
  • Gamarra, J. R.; Diniz, A. E. Taper Turning of Super Duplex Stainless Steel: Tool Life, Tool Wear and Workpiece Surface Roughness. J. Braz. 2018, 40, 1–13. DOI: 10.1007/s40430-018-0991-1.456789.
  • Dolinšek, S. Work-hardening in the Drilling of Austenitic Stainless Steels. J. Mater. Process. Technol. 2003, 133, 63–70. DOI: 10.1016/S0924-0136(02)00245-5.
  • Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Machinability Study of First Generation Duplex (2205), Second Generation Duplex (2507) and Austenite Stainless Steel during Drilling Process. Wear. 2013, 304, 20–28. DOI: 10.1016/j.wear.2013.04.008.
  • Hariharan, V. The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent). MSc Dissertation, University of Tennessee, Knoxville, 2005.
  • Renaudot, N.; Chauveau, E.; Mantel, M. 1.4669, a New Lean Duplex Stainless Steel with Improved Toughness and Machinability. Metall. Ital. 2012, 9, 29–35.
  • Jeon, S.-H.; Kim, S.-T.; Lee, I.-S.; Park, Y.-S. Effects of Sulfur Addition on Pitting Corrosion and Machinability Behavior of Super Duplex Stainless Steel Containing Rare Earth Metals: Part 2. Corros. Sci. 2010, 52, 3537–3547. DOI: 10.1016/j.corsci.2010.07.002.
  • Martinho, R. P.; Silva, F. J. G.; Martins, C.; Lopes, H. Comparative Study of PVD and CVD Cutting Tools Performance in Milling of Duplex Stainless Steel. J. Adv. Manuf. Technol. 2019, 102, 2423–2439. DOI: 10.1007/s00170-019-03351-8.
  • Jiang, L.; Paro, J.; Hänninen, H.; Kauppinen, V.; Oraskari, R. Comparison of Grindability of HIPped Austenitic 316L, Duplex 2205 and Super Duplex 2507 DSS and As-cast 304 Stainless Steels Using Alumina Wheels. J. Mater. Process. Technol. 1996, 62, 1–9. DOI: 10.1016/0924-0136(95)02199-X.
  • Paro, J.; Hänninen, H.; Kauppinen, V. Tool Wear and Machinability of HIPed P/M and Conventional Cast Duplex Stainless Steels. Wear. 2001, 249, 279–284. DOI: 10.1016/S0043-1648(01)00570-1.
  • Ming, W.; Dang, J.; An, Q.; Chen, M. Chip Formation and Hole Quality in Dry Drilling Additive Manufactured TI6Al4V. Mater. 2020, 35, 43–51. DOI: 10.1080/10426914.2019.1692353.
  • Ming, W.; Chen, J.; An, Q.; Chen, M. Dynamic Mechanical Properties and Machinability Characteristics of Selective Laser Melted and Forged Ti6Al4V. J. Mater. Process. Technol. 2019, 271, 284–292. DOI: 10.1016/j.jmatprotec.2019.04.015.
  • Lizzul, L.; Bertolini, R.; Ghiotti, A.; Bruschi, S. Effect of AM-induced Anisotropy on the Surface Integrity of Laser Powder Be Fused Ti6Al4V Machined Parts. Procedia Manuf. 2020, 47, 505–510. DOI: 10.1016/j.promfg.2020.04.149.
  • Zimmermann, M.; Müller, D.; Kirsch, B.; Greco, S.; Aurich, J. C. Analysis of the Machinability When Milling AlSi10Mg Additively Manufactured via Laser-based Powder Bed Fusion. Int. J. Adv. Manuf. Technol. 2021, 112, 989–1005. DOI: 10.1007/s00170-020-06391-7.
  • Wood, P.; Diaz-Álvarez, A.; Diaz-Álvarez, J.; Miguélez, M. H.; Rusinek, A.; Gunputh, U. F.; Williams, G.; Bahi, S.; Sienkiewicz, J.; Płatek, P. Machinability of INCONEL718 Alloy with a Porous Microstructure Produced by Laser Melting Powder Bed Fusion at Higher Energy Densities. Materials. 2020, 13, 5730. DOI: 10.3390/ma13245730.
  • Yang, L.; Patel, K. V.; Jarosz, K.; Özel, T. Surface Integrity Induced in Machining Additively Fabricated Nickel Alloy Inconel 625. Procedia CIRP. 2020, 87, 351–354. DOI: 10.1016/j.procir.2020.02.104.
  • Du, W.; Bai, Q.; Zhang, B. Machining Characteristics of 18Ni-300 Steel in Additive/subtractive Hybrid Manufacturing. J. Adv. Manuf. Technol. 2018, 95, 2509–2519. DOI: 10.1007/s00170-017-1364-0.
  • Fortunato, A.; Lulaj, A.; Melkote, S.; Liverani, E.; Ascari, A.; Umbrello, D. Milling of Maraging Steel Components Produced by Selective Laser Melting. J. Adv. Manuf. Technol. 2018, 94, 1895–1902. DOI: 10.1007/s00170-017-0922-9.
  • Shahab, A. R. Surface Integrity Analysis before and after Machining of Additively Manufactured (3D Printed) 316L Stainless Steel Using Selective Laser Melting (SLM) and Electron Beam Melting (EBM). Masters Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2020.
  • de Assis, C. L. F.; Mecelis, G. M.; Coelho, R. T. An Investigation of Stainless Steel 316L Parts Produced by Powder Bed Fusion Submitted to Micro-endmilling Operations. J. Adv. Manuf. Technol. 2020, 109, 1867–1880. DOI: 10.1007/s00170-020-05710-2.
  • Davidson, K.; Singamneni, S. Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Mater. 2015, 31, 1543–1555. DOI: 10.1080/10426914.2015.1090605.
  • Jiang, D.; Birbilis, N.; Hutchinson, C. R.; Brameld, M. On the Microstructure and Electrochemical Properties of Additively Manufactured Duplex Stainless Steels Produced Using Laser-powder Bed Fusion. Corrosion. 2020, 76, 871–883. DOI: 10.5006/3571.
  • Elfasi, O. Machinability of Stainless Steel Alloys. MSc Dissertation, École de technologie supérieure ÉTS, Montreal, Canada, 2018.
  • Olofson, C. T.; Gurklis, J. A.; Boulger, F. W. Machining and Grinding of Ultrahigh-Strength Steels and Stainless Steel Alloys. NASA Spec. Publ. 1968, SP-5084, 201.
  • Rodríguez, J.; Muñoz-Escalona, P.; Cassier, Z. Influence of Cutting Parameters and Material Properties on Cutting Temperature When Turning Stainless Steel. Rev. Fac. Ing. 2011, 26, 71–80.
  • BSSA. Speed and feeds for drilling and reaming stainless steels, 2021.
  • ASTM. ASTM E384-17 Standard Test Method for Microindentation Hardness of Materials; American Society for Testing and Materials International: PA, U.S.A, 2017.
  • Komatsu, T.; Yoshino, T.; Matsumura, T.; Torizuka, S. Effect of Crystal Grain Size in Stainless Steel on Cutting Process in Micromilling. Procedia CIRP. 2012, 1, 150–155. DOI: 10.1016/j.procir.2012.04.026.
  • Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G. Chip Formation Mechanism and Machinability of Wrought Duplex Stainless Steel Alloys. J. Adv. Manuf. Technol. 2015, 80, 1127–1135. DOI: 10.1007/s00170-015-7113-3.
  • Davidson, K. P.; Singamneni, S. B. Metallographic Evaluation of Duplex Stainless Steel Powders Processed by Selective Laser Melting. Rapid Prototyp. J. 2017, 23, 1146–1163. DOI: 10.1108/RPJ-04-2016-0053.
  • Knyazeva, M.; Duplex Steels, P. M.; Part, I. I. Carbides and Nitrides. Metallogr. Microstruct. Anal. 2013, 2, 343–351. DOI: 10.1007/s13632-013-0088-2.
  • Bhaskar, L.; Raj, D. S. Evaluation of the Effect of Cryogenic Treatment of HSS Drills at Different Holding Time in Drilling AISI 316-SS. Eng. Res. Express. 2020, 2, 025005. DOI: 10.1088/2631-8695/ab7e18.
  • Sujan Kumar, M.; Deivanathan, R. Effect of Process Parameters on Drilling – An Overview. Mater. Today Proc. 2021, 46, 1401–1406. In Press. DOI: 10.1016/j.matpr.2021.02.574.
  • Boing, D.; Schroeter, R. B.; de Oliveira, A. J. Three-dimensional Wear Parameters and Wear Mechanisms in Turning Hardened Steels with PCBN Tools. Wear. 2018, 389–399, 69–78. DOI: 10.1016/j.wear.2017.11.017.
  • BSSA. Heat Tint (Temper) Colours on Stainless Steel Surfaces Heated in Air; Sheffield: Process Plant & Furnaces, 2021.
  • Dolinšek, S.; Ekinović, S.; Kopač, J. A Contribution to the Understanding of Chip Formation Mechanism in High-speed Cutting of Hardened Steel. J. Mater. Process. Technol. 2004, 157–158, 485–490. DOI: 10.1016/j.jmatprotec.2004.07.144.
  • Li, J.; Liu, X.; Li, G.; Han, P.; Liang, W. Characterization of the Microstructure, Mechanical Properties, and Corrosion Resistance of a Friction-Stir-Welded Joint of Hyper Duplex Stainless Steel. J. Met. 2017, 7, 138. DOI: 10.3390/met7040138.
  • Fang, Y. L.; Liu, Z. Y.; Song, H. M.; Jiang, L. Z. Hot Deformation Behavior of a New Austenite–ferrite Duplex Stainless Steel Containing High Content of Nitrogen. Mater. Sci. Eng. A. 2009, 526, 128–133. DOI: 10.1016/j.msea.2009.07.012.
  • Saeid, T.; Abdollah-zadeh, A.; Assadi, H.; Malek Ghaini, F. Effect of Friction Stir Welding Speed on the Microstructure and Mechanical Properties of a Duplex Stainless Steel. Mater. Sci. Eng. A. 2008, 496, 262–268. DOI: 10.1016/j.msea.2008.05.025.
  • Xie, G. M.; Cui, H. B.; Luo, Z. A.; Misra, R. D. K.; Wang, G. D. Microstructural Evolution and Mechanical Properties of the Stir Zone during Friction Stir Processing a Lean Duplex Stainless Steel. Mater. Sci. Eng. A. 2017, 704, 311–321. DOI: 10.1016/j.msea.2017.07.093.
  • Jorge, A. M.; Reis, G. S.; Balancin, O. Influence of the Microstructure on the Plastic Behaviour of Duplex Stainless Steels. Mater. Sci. Eng. A. 2011, 528, 2259–2264. DOI: 10.1016/j.msea.2010.11.087.
  • Xue, Q.; Cerreta, E. K.; Gray, G. T., III. Influence of Explosive-driven Shock Prestraining on the Microstructural Evolution and Shear Localisation of 304 and 316L Stainless Steels. AIP Conf. Proc. 2006, 845, 783–786. DOI: 10.1063/1.2263439.
  • Liu, F. C.; Nelson, T. W. In-situ Material Flow Pattern around Probe during Friction Stir Welding of Austenitic Stainless Steel. Mater. Des. 2016, 110, 354–364. DOI: 10.1016/j.matdes.2016.07.147.
  • Garibaldi, M.; Ashcroft, I.; Simonelli, M.; Hague, R. Metallurgy of High-silicon Steel Parts Produced Using Selective Laser Melting. Acta Mater. 2016, 110, 207–216. DOI: 10.1016/j.actamat.2016.03.037.
  • Drozda, T. J.; Wick, C. Tool and Manufacturing Engineering Handbook, 4th ed; - Machining; Society of Manufacturing Engineers: Dearborn, MI, 1983; Vol. 1.
  • Rosa, P. A. R.; Kolednik, O.; Martins, P. A. F.; Atkins, A. G. The Transient Beginning to Machining and the Transition to Steady-state Cutting. Int. J. Mach. Tools Manuf. 1904–1915, 2007(47). DOI: 10.1016/j.ijmachtools.2007.03.005.
  • Iams, A. D.; Keist, J. S.; Palmer, T. A. Formation of Austenite in Additive Manufactured and Post-processed Duplex Stainless Steel Alloys. Metall. Mater. Trans A. 2020, 51, 982–999. DOI: 10.1007/s11661-019-05562-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.