389
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Heat treatment and temperature effects on formability of AA2014-T6 in incremental forming

ORCID Icon, , &
Pages 1384-1392 | Received 11 Aug 2021, Accepted 03 Dec 2021, Published online: 29 Dec 2021

References

  • Dursun, T.; Soutis, C. Recent Developments in Advanced Aircraft Aluminium Alloys. Mater. Des. 2014, 56, 862–871. DOI: 10.1016/j.matdes.2013.12.002.
  • Ghosh, M.; Miroux, A.; Werkhoven, R. J.; Bolt, P. J.; Kestens, L. A. I. Warm Deep-Drawing and Post Drawing Analysis of Two Al–Mg–Si Alloys. J. Mater. Process. Technol. 2014, 214(4), 756–766. DOI: 10.1016/j.jmatprotec.2013.10.020.
  • Fentahun, M. A.; Savas, M. A. Materials Used in Automotive Manufacture and Material Selection Using Ashby Charts. Int. J. Mater. Eng. 2018, 8(3), 40–54.
  • Hirsch, J. Aluminium in Innovative Light-weight Car Design. Mater. Trans. 2011, 52(5), 818–824. DOI: 10.2320/matertrans.L-MZ201132.
  • Singh, S. A.; Priyadarshi, S.; Tandon, P. Comparative Study of Incremental Forming and Elevated Temperature Incremental Forming through Experimental Investigations on AA 1050 Sheet. J. Manuf. Sci. Eng. 2020, 143(6), 1–7.
  • John, J.; Shanmuganatan, S. P.; Kiran, M. B.; Kumar, V. S. S.; Krishnamurthy, R. Friction Stir Processing Combined with Incremental Forming Effect on AA2014-T6. Mater. Manuf. Process. 2021, 36(8), 1–17. DOI: 10.1080/10426914.2021.1885696.
  • Al-Obaidi, A.; Kräusel, V.; Landgrebe, D. Hot Single-Point Incremental Forming Assisted by Induction Heating. Int. J. Adv. Manuf. Technol. 2016, 82(5–8), 1163–1171. DOI: 10.1007/s00170-015-7439-x.
  • Duflou, J. R.; Habraken, A.-M.; Cao, J.; Malhotra, R.; Bambach, M.; Adams, D.; Vanhove, H.; Mohammadi, A.; Jeswiet, J. Single Point Incremental Forming: State-of-the-Art and Prospects. Int. J. Mater. Form. 2018, 11(6), 743–773. DOI: 10.1007/s12289-017-1387-y.
  • Bagudanch, I.; Vives-Mestres, M.; Sabater, M.; Garcia-Romeu, M. L. Polymer Incremental Sheet Forming Process: Temperature Analysis Using Response Surface Methodology. Mater. Manuf. Process. 2017, 32(1), 44–53. DOI: 10.1080/10426914.2016.1176191.
  • Pandre, S.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Influence of Processing Temperature on Formability of Thin-Rolled DP590 Steel Sheet. Mater. Manuf. Process. 2020, 35(8), 901–909. DOI: 10.1080/10426914.2020.1743854.
  • Wankhede, P.; Suresh, K. A Review on the Evaluation of Formability in Sheet Metal Forming. Adv. Mater. Process. Technol.2020, 6(2), 458–485 doi:10.1080/2374068X.2020.1731229.
  • Hussain, G.; Khan, H. R.; Gao, L.; Hayat, N. Guidelines for Tool-Size Selection for Single-Point Incremental Forming of an Aerospace Alloy. Mater. Manuf. Process. 2013, 28(3), 324–329. DOI: 10.1080/10426914.2012.700151.
  • Tucci, F.; Valente, R. A.; de Sousa, R. J.; Rubino, F.; Carlone, P. A Finite Element Approach to the Integrated Modelling of the Incremental Forming of Friction Stir Welded Sheets. AIP Conference Proceedings. Vitoria-Gasteiz, Spain, 2019, 2113( 1).
  • Andrade-Campos, A.; Thuillier, S.; Martins, J.; Carlone, P.; Tucci, F.; Valente, R.; Paulo, R. M.; de Sousa, R. J. Integrated Design in Welding and Incremental Forming: Material Model Calibration for Friction Stir Welded Blanks. Procedia Manuf. 2020, 47, 429–434. DOI: 10.1016/j.promfg.2020.04.327.
  • Rubino, F.; Esperto, V.; Paulo, R. M.; Tucci, F.; Carlone, P. Integrated Manufacturing of AA6082 by Friction Stir Welding and Incremental Forming: Strain Analysis of Deformed Samples. Procedia Manuf. 2020, 47, 440–444. DOI: 10.1016/j.promfg.2020.04.331.
  • Carlone, P.; Thuillier, S.; Andrade-Campos, A.; de Sousa, R. A.; Valente, R. Incremental Forming of Friction-stir Welded Aluminium Blanks: An Integrated Approach. Int. J. Mater. Form. 2021, 6, 1–7.
  • Micari, F.; Ambrogio, G. A Common Shape for Conducting Incremental Forming Tests. 1st Incremental Forming Workshop. Saarbrucken, Germany, University of Saarbrucken, 2004, 9.
  • Hussain, G.; Gao, L.; Hayat, N. Forming Parameters and Forming Defects in Incremental Forming of an Aluminum Sheet: Correlation, Empirical Modeling, and Optimization: Part A. Mater. Manuf. Process. 2011, 26(12), 1546–1553. DOI: 10.1080/10426914.2011.552017.
  • Suresh, K.; Bagade, S. D.; Regalla, S. P. Deformation Behavior of Extra Deep Drawing Steel in Single-Point Incremental Forming. Mater. Manuf. Process. 2015, 30(10), 1202–1209. DOI: 10.1080/10426914.2014.994755.
  • Fan, G.; Sun, F.; Meng, X.; Gao, L.; Tong, G. Electric Hot Incremental Forming of Ti-6Al-4V Titanium Sheet. Int. J. Adv. Manuf. Technol. 2010, 49(9–12), 941–947. DOI: 10.1007/s00170-009-2472-2.
  • Van Sy, L.; Nam, N. T. Hot Incremental Forming of Magnesium and Aluminum Alloy Sheets by Using Direct Heating System. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227(8), 1099–1110. DOI: 10.1177/0954405413484014.
  • Uheida, E. H.; Oosthuizen, G. A.; Dimitrov, D. M.; Bezuidenhout, M. B.; Hugo, P. A. Effects of the Relative Tool Rotation Direction on Formability during the Incremental Forming of Titanium Sheets. Int. J. Adv. Manuf. Technol. 2018, 96(9–12), 3311–3319. DOI: 10.1007/s00170-018-1837-9.
  • Francesco, G.; Giuseppina, A.; Luigino, F. Incremental Forming with Local Induction Heating on Materials with Magnetic and Non-Magnetic Properties. Procedia Eng. 2017, 183, 143–148. DOI: 10.1016/j.proeng.2017.04.037.
  • El-Danaf, E. A.; Soliman, M. S.; Almajid, A. A. Effect of Solution Heat Treatment on the Hot Workability of Al–Mg–Si Alloy. Mater. Manuf. Process. 2009, 24(6), 637–643. DOI: 10.1080/10426910902769079.
  • El Fakir, O.; Wang, L.; Balint, D.; Dear, J. P.; Lin, J.; Dean, T. A. Numerical Study of the Solution Heat Treatment, Forming, and in-Die Quenching (HFQ) Process on AA5754. Int. J. Mach. Tools Manuf. 2014, 87, 39–48. DOI: 10.1016/j.ijmachtools.2014.07.008.
  • Chen, Y.-Z.; Liu, W.; Yuan, S.-J. Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming. JOM. 2015, 67(5), 938–947. DOI: 10.1007/s11837-015-1294-y.
  • Al-Ghamdi, K. A.; Hussain, G. SPIF of Cu/Steel Clad Sheet: Annealing Effect on Bond Force and Formability. Mater. Manuf. Process. 2016, 31(6), 758–763. DOI: 10.1080/10426914.2015.1048363.
  • Ma, W.; Wang, B.; Yang, L.; Tang, X.; Xiao, W.; Zhou, J. Influence of Solution Heat Treatment on Mechanical Response and Fracture Behaviour of Aluminium Alloy Sheets: An Experimental Study. Mater. Des. 2015, 88, 1119–1126. DOI: 10.1016/j.matdes.2015.09.044.
  • Fan, X.; He, Z.; Zhou, W.; Yuan, S. Formability and Strengthening Mechanism of Solution Treated Al–Mg–Si Alloy Sheet under Hot Stamping Conditions. J. Mater. Process. Technol. 2016, 228, 179–185. DOI: 10.1016/j.jmatprotec.2015.10.016.
  • Prasad, K. S.; Panda, S. K.; Kar, S. K.; Murty, S. V. S. N.; Sharma, S. C. Effect of Solution Treatment on the Formability and Part Performance of IN718 Sheet Material. Adv. Mater. Process. Technol. 2018, 4(4), 680–694.
  • Chen, S.; Li, F.; Chen, K.; Huang, L.; Peng, G. Synergic Effect of Hot Deformation Temperature and Pre-straining on Ageing Precipitates and Mechanical Property of 2014 Al Alloy. Mater. Charact. 2020, 167, 1–12.
  • Nie, J.-F.; Polmear, I. J.; John, D. S. S. Light Alloys: Metallurgy of the Light Metals; Massachusetts (United States): Elsevier, 2017.
  • Eskin, D. G. Decomposition of Supersaturated Solid Solutions in Al–Cu–Mg–Si Alloys. J. Mater. Sci. 2003, 38(2), 279–290. DOI: 10.1023/A:1021109514892.
  • Kumar, V.; Kumar, R. Investigation of Surface Roughness in Incremental Sheet Forming of AA 2014-T6 Using Taguchi’s Method. J. Phys. Conf. Ser. 2020, 1519(1),1014–1020.
  • Satish, D. R.; Feyissa, F.; Kumar, D. R. Cryorolling and Warm Forming of AA6061 Aluminum Alloy Sheets. Mater. Manuf. Process. 2017, 32(12), 1345–1352. DOI: 10.1080/10426914.2017.1317352.
  • Ghosh, K. S.; Tripati, K. Microstructural Characterization and Electrochemical Behavior of AA2014 Al-Cu-Mg-Si Alloy of Various Tempers. J. Mater. Eng. Perform. 2018, 27(11), 5926–5937. DOI: 10.1007/s11665-018-3694-y.
  • Papazian, J. M. A Calorimetric Study of Precipitation in Aluminum Alloy 2219. Metall. Trans. A. 1981, 12(2), 269–280. DOI: 10.1007/BF02655200.
  • Ghosh, K. S.; Das, K.; Chatterjee, U. K. Calorimetric Studies of 8090 and 1441 Al–Li–Cu–Mg–Zr Alloys of Conventional and Retrogressed and Reaged Tempers. J. Mater. Sci. 2007, 42(12), 4276–4290. DOI: 10.1007/s10853-006-0619-1.
  • Khalatbari, H.; Lazoglu, I. Friction Stir Incremental Forming of Polyoxymethylene: Process Outputs, Force and Temperature. Mater. Manuf. Process. 2021, 36(1), 94–105. DOI: 10.1080/10426914.2020.1819542.
  • Rajaram, G.; Kumaran, S.; Rao, T. S. High Temperature Tensile and Wear Behaviour of Aluminum Silicon Alloy. Mater. Sci. Eng. A. 2010, 528(1), 247–253. DOI: 10.1016/j.msea.2010.09.020.
  • Wankhede, P.; Radhakrishnan, T.; Kurra, S.; Radhika, S. CGA: An Image Processing Based Software for Surface Strain Analysis in Sheet Metal Forming. J. Strain Anal. Eng. Des 2021, 56(8), 519–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.