199
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Parametric estimation for AWJ cutting of Ti-6Al-4V alloy using Rat swarm optimization algorithm

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1871-1881 | Received 10 Dec 2021, Accepted 08 Mar 2022, Published online: 22 Apr 2022

References

  • Tripathi, D.; Vachhani, K.; Bandhu, D.; Kumari, S.; Kumar, V.; Abhishek, K. Experimental Investigation and Optimisation of Abrasive Waterjet Machining Parameters for GFRP Composites Using Metaphor-Less Algorithms. Mater. Manuf. Processes. 2021, 36(7), 803–813. DOI: 10.1080/10426914.2020.1866193.
  • Doğankaya, E.; Kahya, M.; Özgür Ünver, H. Abrasive Water Jet Machining of UHMWPE and Trade-Off Optimisation. Mater. Manuf. Processes. 2020, 35(12), 1339–1351. DOI: 10.1080/10426914.2020.1772486.
  • Panchal, K.; Shaikh, A. Performance Analysis and Process Parameters Optimisation on Specific Cutting Energy in the Abrasive Waterjet Cutting. Int. J. Ambient Energy. 2021, 1–8. DOI: 10.1080/01430750.2021.1873851.
  • Naresh Babu, M.; Muthukrishnan, N. Investigation of Multiple Process Parameters in Abrasive Water Jet Machining of Tiles. J. Chin. Inst. Eng. 2015, 38(6), 692–700. DOI: 10.1080/02533839.2015.1010944.
  • Ishfaq, K.; Ahmad Mufti, N.; Ahmed, N.; Pervaiz, S. Abrasive Waterjet Cutting of Cladded Material: Kerf Taper and MRR Analysis. Mater. Manuf. Processes. 2018, 34(5), 544–553. DOI: 10.1080/10426914.2018.1544710.
  • Llanto, J.; Tolouei-Rad, M.; Vafadar, A.; Aamir, M. Recent Progress Trend on Abrasive Waterjet Cutting of Metallic Materials: A Review. Appl. Sci. 2021, 11(8), 3344. DOI: 10.3390/app11083344.
  • Rao, R.; Rai, D.; Balic, J. Multi-Objective Optimisation of Abrasive Waterjet Machining Process Using Jaya Algorithm and PROMETHEE Method. J. Intell. Manuf. 2017, 30(5), 2101–2127. DOI: 10.1007/s10845-017-1373-8.
  • Dharmendra, B. V.; Kodali, S. P.; Boggarapu, N. R. Multi-Objective Optimisation for Optimum Abrasive Water Jet Machining Process Parameters of Inconel 718 Adopting the Taguchi Approach. Multidiscip. Model. Mater. Struct. 2020, 16(2), 306–321. DOI: 10.1108/MMMS-10-2018-0175.
  • Karataş, M. A.; Motorcu, A. R.; Gökkaya, H. Optimisation of Machining Parameters for Kerf Angle and Roundness Error in Abrasive Water Jet Drilling of CFRP Composites with Different Fiber Orientation Angles. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 173. DOI: 10.1007/s40430-020-2261-2.
  • Jagadeesh, B.; Dinesh Babu, P.; Nalla Mohamed, M.; Marimuthu, P. Experimental Investigation and Optimisation of Abrasive Water Jet Cutting Parameters for the Improvement of Cut Quality in Carbon Fiber Reinforced Plastic Laminates. J. Ind. Text. 2017, 48(1), 178–200. DOI: 10.1177/1528083717725911.
  • Shanmugam, A., Krishnamurthy, K., Mohanraj, T. Experimental Study of Surface Roughness and Taper Angle in Abrasive Water Jet Machining of 7075 Aluminium Composite Using Response Surface Methodology. Surf. Rev. Lett. 2019, 1950112, 1–9. DOI: 10.1142/S02.
  • Mahalingam, S., Kuppusamy, B., Natarajan, Y. Multi-Objective Soft Computing Approaches to Evaluate the Performance of Abrasive Water Jet Drilling Parameters on Die Steel. Arab. J. Sci. Eng. 2021, 46, 7893–7907. DOI: 10.1007/s13369-021-05591-x.
  • Qiang, Z.; Miao, X.; Wu, M.; Sawhney, R. Optimisation of Abrasive Water Jet Machining Using Multi-Objective Cuckoo Search Algorithm. Int. J. Adv. Manuf. Technol. 2018, 99(5–8), 1257–1266. DOI: 10.1007/s00170-018-2549-x.
  • Wang, S.; Hu, D.; Yang, F.; Lin, P. Research on Kerf Error of Aluminum Alloy 6061-T6 Cut by Abrasive Water Jet. Int. J. Adv. Manuf. Technol. 2022, 118, 2513–2521. DOI: 10.1007/s00170-021-08056-5.
  • Shukla, R.; Singh, D. Experimentation Investigation of Abrasive Water Jet Machining Parameters Using Taguchi and Evolutionary Optimisation Techniques. Swarm Evol. Comput. 2017, 32, 167–183. DOI: 10.1016/j.swevo.2016.07.002.
  • Santhanakumar, M.; Adalarasan, R.; Rajmohan, M. Experimental Modelling and Analysis in Abrasive Waterjet Cutting of Ceramic Tiles Using Grey-Based Response Surface Methodology. Arab. J. Sci. Eng. 2015, 40(11), 3299–3311. DOI: 10.1007/s13369-015-1775-x.
  • Pawar, P.; Vidhate, U.; Khalkar, M. Improving the Quality Characteristics of Abrasive Water Jet Machining of Marble Material Using Multi-Objective Artificial Bee Colony Algorithm. J. Comput. Des. Eng. 2017, 5(3), 319–328. DOI: 10.1016/j.jcde.2017.12.002.
  • Chakraborty, S.; Mitra, A. Parametric Optimisation of Abrasive Water-Jet Machining Processes Using Grey Wolf Optimizer. Mater. Manuf. Processes. 2018, 33(13), 1471–1482. DOI: 10.1080/10426914.2018.1453158.
  • Tamilarasan, A.; Renugambal, A.; Manikanta, D.; Sekhar Reddy, G. B. C.; Sravankumar, K.; Sreekar, B.; Prasadreddy, G. V. Application of Crow Search Algorithm for the Optimisation of Abrasive Water Jet Cutting Process Parameters. IOP Conf. Ser. Mater. Sci. Eng. 2018, 390, 012034. DOI: 10.1088/1757-899x/390/1/012034.
  • Arumugam, S.; Chengareddy, P.; Tamilarasan, A.; Santhanam, V. RSM and Crow Search Algorithm-Based Optimisation of Ultrasonicated Transesterification Process Parameters on Synthesis of Polyol Ester-Based Biolubricant. Arab. J. Sci. Eng. 2019, 44(6), 5535–5548. DOI: 10.1007/s13369-019-03847-1.
  • Li, H.; Wang, J. An Experimental Study of Abrasive Waterjet Machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2015, 81(1–4), 361–369. DOI: 10.1007/s00170-015-7245-5.
  • Umanath, K.; Devika, D.; Rashia Begum, S. Experimental Investigation of Role of Particles Size and Cutting Passes in Abrasive Waterjet Machining Process on Titanium Alloy (Ti–6al–4v) Using Taguchi’s Method. Mater. Manuf. Processes. 2021, 36(8), 936–949. DOI: 10.1080/10426914.2020.1866202.
  • Jani, S.; Senthil Kumar, A.; Khan, M.; Sujin Jose, A. Design and Optimisation of Unit Production Cost for AWJ Process on Machining Hybrid Natural Fibre Composite Material. Int. J. Light Weight Mater. Manuf. 2021, 4(4), 491–497. DOI: 10.1016/j.ijlmm.2021.07.002.
  • Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M. A Novel Algorithm for Global Optimisation: Rat Swarm Optimizer. J. Ambient. Intell. Humaniz. Comput. 2020, 12(8), 8457–8482. DOI: 10.1007/s12652-020-02580-0.
  • Ghadge, R.; Prakash, S. Investigation and Prediction of Hybrid Composite Leaf Spring Using Deep Neural Network Based Rat Swarm Optimisation. Mech. Based Des. Struct. 2021, 1–30. DOI: 10.1080/15397734.2021.1972309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.