189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and properties of a stable and porous YSZ/nano-HA structure by binder jetting processes

, &
Pages 989-998 | Received 16 Aug 2021, Accepted 09 Apr 2022, Published online: 11 Jun 2022

References

  • Zhou, Z. X.; Lennon, A.; F. Buchanan; McCarthy H. O.; Dunne N. Binder Jetting Additive Manufacturing of Hydroxyapatite Powders: Effects of Adhesives on Geometrical Accuracy and Green Compressive Strength. Addit. Manuf. 2020, 36, 101645. DOI: 10.1016/j.addma.2020.101645.
  • Barthel, B.; Janas, F.; Wieland, S. Powder Condition and Spreading Parameter Impact on Green and Sintered Density in Metal Binder Jetting. Powder Metall. 2021, 64(5), 378–386. DOI: 10.1080/00325899.2021.1912923.
  • Lee, S.-Y.; Jiang, C.-P. Development of a Three-Dimensional Slurry Printing System Using Dynamic Mask Projection for Fabricating Zirconia Dental Implants. Mater. Manuf. Process. 2015, 30(12), 1498–1504. DOI: 10.1080/10426914.2014.984208.
  • Wei, W. Q.; Wang, Y.; Chai, W.; Zhang Y.; Chen X. Molecular Dynamics Simulation and Experimental Study of the Bonding Properties of Polymer Binders in 3D Powder Printed Hydroxyapatite Bioceramic Bone Scaffolds. Ceram. Int. 2017, 43(16), 13702–13709.
  • Zhang, B.; Pei, X.; Song, P.; Sun, H.; Li, H.; Fan, Y.; Jiang, Q.; Zhou, C.; Zhang, X., et al. Porous Bioceramics Produced by Inkjet 3D Printing: Effect of Printing Ink Formulation on the Ceramic Macro and Micro Porous Architectures Control. Compos. Part B-Eng. 2018, 155, 112–121. DOI: 10.1016/j.compositesb.2018.08.047.
  • Butscher, A.; Bohner, M.; Roth, C.; Ernstberger, A.; Heuberger, R.; Doebelin, N.; Rudolf von Rohr, P.; Müller, R., et al. Printability of Calcium Phosphate Powders for Three-Dimensional Printing of Tissue Engineering Scaffolds. Acta. Biomater. 2012, 8(1), 373–385.
  • Barui, S. 3D Inkjet Printing of Biomaterials: Principles and Applications. Med Devices & Sens. 2020, 4(1), e10143. DOI: 10.1002/mds3.10143.
  • Bui, V. D.; Mwangi, J. W.; Schubert, A. Powder Mixed Electrical Discharge Machining for Antibacterial Coating on Titanium Implant Surfaces. J. Manuf. Processes. 2019, 44, 261–270. DOI: 10.1016/j.jmapro.2019.05.032.
  • Yu, M.; Liang, H.; Liu, J.; Wu, L.; Li, X.; Zhu, M., et al. Effect of Tartaric Acid on Anodic Behaviour of Titanium Alloy. Surf. Eng. 2014, 31(12), 912–918.
  • E. Uribe-Lam; C. D. Treviño-Quintanilla; E. Cuan-Urquizo; O. Olvera-Silva. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Process.2021, 36(3), 1–24. DOI: 10.1080/10426914.2020.1819544.
  • Cox, S. C.; Thornby, J. A.; Gibbons, G. J.; Williams, M. A.; Mallick, K. K. 3D Printing of Porous Hydroxyapatite Scaffolds Intended for Use in Bone Tissue Engineering Applications. Mat. Sci. Eng. C. 2015, 47, 237–247. DOI: 10.1016/j.msec.2014.11.024.
  • Mu, X.; Agostinacchio, F.; Xiang, N.; Pei, Y.; Khan, Y.; Guo, C.; Cebe, P.; Motta, A.; Kaplan, D. L., et al. Recent Advances in 3D Printing with Protein-Based Inks. Prog. Polym. Sci. 2021, 115, 101375. DOI: 10.1016/j.progpolymsci.2021.101375.
  • Hua, L.; Lei, T.; Qian, H.; Zhang, Y.; Hu, Y.; Lei, P., et al. 3D-Printed Porous Tantalum: Recent Application in Various Drug Delivery Systems to Repair Hard Tissue Defects. Expert Opin Drug Del. 2021, 18(5), 625–634.
  • Ahn, J.; Kim, J.; Han G.; Kim D.; Cheon K. H.; Lee H.; Kim H. E.; Kim Y. J.; Jang T. S.; et al. 3D-Printed Biodegradable Composite Scaffolds with Significantly Enhanced Mechanical Properties via the Combination of Binder Jetting and Capillary Rise Infiltration Process. Addit. Manuf. 2021, 41, 101988. DOI: 10.1016/j.addma.2021.101988.
  • Aliyu, A. A. A.; Abdul-Rani, A. M.; Ginta, T. L.; Rao, T. V. V. L. N.; Selvamurugan, N.; Roy, S., et al. Hydroxyapatite Mixed-Electro Discharge Formation of Bioceramic Lakargiite (CaZro3) on Zr–cu–ni–ti–be for Orthopedic Application. Mater. Manuf. Process. 2018, 33(16), 1734–1744.
  • Kumar V. A.; P. R. Raju; N. Ramanaiah; R. Siriyala. Effect of ZrO2 Content on the Mechanical Properties and Microstructure of Hap/zro2 Nanocomposites. Ceram. Int. 2018, 44(9), 10345–10351.
  • Schirmer R. W.; Abendroth M.; Roth S.; Kühnel L.; Zeidler H.; Kiefer B. Simulation-Supported Characterization of 3D-Printed Biodegradable Structures.Gamm-Mitteilungen. 2021, 44(4), e202100018. 10.1002/gamm.202100018.
  • Bose, S.; Traxel, K. D.; Vui, A. A.; Bandyopadhyay, A. Clinical Significance of Three-Dimensional Printed Biomaterials and Biomedical Devices. Mrs Bull. 2019, 44(6), 494–504.
  • Mostafaei, A.; Elliott, A. M.; Barnes, J. E., Li F.; Tan W.; Cramer C. L.; Nandwana P.; Chmielus M. Binder Jet 3D Printing—process Parameters, Materials, Properties, and Challenges. Prog. Mater. Sci. 2021, 119, 100707. DOI: 10.1016/j.pmatsci.2020.100707.
  • Singh, M. K.; Zafar, S.; Talha, M. Development of Porous Bio-Composites Through Microwave Curing for Bone Tissue Engineering. Mater. Today. 2019, 18, 731–739. DOI: 10.1016/j.matpr.2019.06.478.
  • Chai, W.; Wei, Q.; Yang, M.; Ji, K.; Guo, Y.; Wei, S.; Wang, Y. The Printability of Three Water Based Polymeric Binders and Their Effects on the Properties of 3D Printed Hydroxyapatite Bone Scaffold. Ceram. Int. 2020, 46(5), 6663–6671. DOI: 10.1016/j.ceramint.2019.11.154.
  • Brunello, G.; Sivolella, S.; Meneghello, R.; Ferroni, L.; Gardin, C.; Piattelli, A.; Zavan, B.; Bressan, E., et al. Powder-Based 3D Printing for Bone Tissue Engineering. Biotechnolo Adv. 2016, 34(5), 740–753.
  • Neufurth, M.; Wang, W. X.; Wang, W. S.; Steffen, R.; Ackermann, M.; Haep, N. D.; Schröder, H. C.; Müller, W. E. G., et al. 3D Printing of Hybrid Biomaterials for Bone Tissue Engineering: Calcium-Polyphosphate Microparticles Encapsulated by Polycaprolactone. Acta. Biomater. 2017, 64, 377–388. DOI: 10.1016/j.actbio.2017.09.031.
  • Meng, Z. B.; Tang, Y. J.; Guo, J., et al. Binding Properties of Nanometer Toughened HA-ZrO2 Bioceramics with Bone Defect. J Oral Maxil Surg.2013, 23(4), 253–256. DOI: 10.1016/j.matchemphys.2021.124616.
  • Matsumoto, T. J.; Ana, S.-H.; Ishimotob, T.; Nakano, T.; Matsumoto, T.; Imazato, S., et al. Zirconia–hydroxyapatite Composite Material with Micro Porous Structure. Dent. Mater. 2011, 27, 205–212.
  • Cao, Y.; Shi, T.; Jiao, C.; Liang, H.; Chen, R.; Tian, Z.; Zou, A.; Yang, Y.; Wei, Z.; Wang, C., et al. Fabrication and Properties of Zirconia Hydroxyapatite Composite Scaffold Based on Digital Light Processing. Ceram. Int. 2020, 46, 2300–2308. DOI: 10.1016/j.ceramint.2019.09.219.
  • Ziaee, F.; Zebarjad, S. M.; Javadpour, S. Compressive and Flexural Properties of Novel Polylactic Acid/hydroxyapatite/yttria-Stabilized Zirconia Hybrid Nanocomposite Scaffold. Int. J. Polym. Mater. 2018, 67(4), 229–238. DOI: 10.1080/00914037.2017.1320659.
  • Winkel, A.; Meszaros, R.; Reinsch, S.; Müller, R.; Travitzky, N.; Fey, T.; Greil, P.; Wondraczek, L., et al. Sintering of 3D-Printed Glass/hap Composites. J. Am. Ceram. Soc. 2012, 95, 3387–3393. DOI: 10.1111/j.1551-2916.2012.05368.x.
  • Suwanprateeb, J.; Sanngam, R.; Panyathanmaporn, T. Influence of Raw Powder Preparation Routes on Properties of Hydroxyapatite Fabricated by 3D Printing Technique. Mater. Sci. Eng. C. 2010, 30, 610–617. DOI: 10.1016/j.msec.2010.02.014.
  • Chen, Y.; Shi, Y.; Ruan, X., X. Long; Y. Kang; K. Deng. The Effects of Spark Plasma Sintering on Fluorine-Substituted Hydroxyapatite/zirconia Composites.Mater Res Innov. 2015, 19(sup2), S2–35-S2–40. 10.1179/1432891715Z.0000000001325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.