203
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Manufacture of bone fracture plates based on glass fiber reinforced polyurethane composite: a gravity casting adapted process

, , &
Pages 1170-1179 | Received 31 Aug 2021, Accepted 31 Mar 2022, Published online: 15 May 2022

References

  • Black, C. R. M.; Goriainov, V.; Gibbs, D.; Kanczler, J.; Tare, R. S.; Oreffo, R. O. C. Bone Tissue Engineering. Curr. Mol. Biol. Rep. 2015, 1(3), 132–140. DOI: 10.1007/s40610-015-0022-2.
  • Hernigou, P.; Pariat, J. History of Internal Fixation (Part 1): Early Developments with Wires and Plates Before World War II. Int. Orthop. 2017, 41(6), 1273–1283. DOI: 10.1007/s00264-016-3347-4.
  • Hernigou, P., and Pariat, J.Int. Orthop. 2017 History of Internal Fixation (Part 1): Early Developments with Wires and Plates before World War II, 41 1489–1500. DOI: 10.1007/s00264-016-3347-4.
  • Jaul, E.; Barron, J. Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population. Front Public Health. 2017, 5. DOI: 10.3389/fpubh.2017.00335.
  • de Moura, A. P.; da Silva, E. H.; dos Santos, V. S.; Galera, M. F.; Sales, F. C.; Elizario, S.; de Moura, M. R.; Rigo, V. A.; da Costa, R. R. Structural and Mechanical Characterization of Polyurethane-CaCo3 Composites Synthesized at High Calcium Carbonate Loading: An Experimental and Theoretical Study. J. Compos. Mater. 2021, 55(21), 2857–2866. DOI: https://doi.org/10.1177/0021998321996414.
  • Thorén, H.; Snäll, J.; Salo, J.; Suominen-Taipale, L.; Kormi, E.; Lindqvist, C.; Törnwall, J. Occurrence and Types of Associated Injuries in Patients with Fractures of the Facial Bones. J. Oral Maxillofac. Surg. 2010, 68(4), 805–810. DOI: 10.1016/j.joms.2009.09.057.
  • . Cleveland Clinic. Bone Fractures. Dis. Conditions. 2020.
  • van Oostwaard, M. Osteoporosis and the Nature of Fragility Fracture: An Overview. Fragility Fract. Nurs. 2018. DOI: https://doi.org/10.1007/978-3-319-76681-2.
  • López-Gómez, S. A.; Villalobos-Rodelo, J. J.; Ávila-Burgos, L.; Casanova-Rosado, J. F.; Vallejos-Sánchez, A. A.; Lucas-Rincón, S. E.; Patiño-Marín, N.; Medina-Solís, C. E. Relationship Between Premature Loss of Primary Teeth with Oral Hygiene, Consumption of Soft Drinks, Dental Care and Previous Caries Experience. Sci. Rep. 2016, 6(1), 21147. DOI: 10.1038/srep21147.
  • Zuo, K. J.; Olson, J. L. The Evolution of Functional Hand Replacement: From Iron Prostheses to Hand Transplantation. Plast. Surg. 2014, 22(1), 44–51. DOI: 10.1177/229255031402200111.
  • Li, J.; Qin, L.; Yang, K.; Ma, Z.; Wang, Y.; Cheng, L.; Zhao, D. Materials Evolution of Bone Plates for Internal Fixation of Bone Fractures: A Review. J. Mater. Sci. Technol. 2020, 36, 190–208. DOI: 10.1016/J.JMST.2019.07.024.
  • Magetsari, R.; van der Houwen, E. B.; Bakker, M. T. J.; van der Mei, H. C.; Verkerke, G. J.; Rakhorst, G.; Hilmy, C. R.; van Horn, J. R.; Busscher, H. J. Biomechanical and Surface Physico-Chemical Analyses of Used Osteosynthesis Plates and Screws—potential for Reuse in Developing Countries? J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79B(2), 236–244. DOI: 10.1002/jbm.b.30534.
  • Mariolani, J. R. L.; Belangero, W. D. Comparing the in vitro Stiffness of Straight-DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. ISRN Orthop. 2013, 2013, 1–6. DOI: https://doi.org/10.1155/2013/308753.
  • Mehboob, H.; Chang, S.-H. Application of Composites to Orthopedic Prostheses for Effective Bone Healing: A Review. Compos. Struct. 2014, 118, 328–341. DOI: 10.1016/J.COMPSTRUCT.2014.07.052.
  • Hak, D. J.; Banegas, R.; Ipaktchi, K.; Mauffrey, C. Evolution of Plate Design and Material Composition. Injury. 2018, 49, S8–S11. DOI: 10.1016/S0020-1383(18)30295-X.
  • da Costa, R. R. C.; de Almeida, F. R. B.; da Silva, A. A. X.; Domiciano, S. M.; Vieira, A. F. C. Design of a Polymeric Composite Material Femoral Stem for Hip Joint Implant. Polímeros. 2019, 29(4). DOI: 10.1590/0104-1428.02119.
  • Shetty, P.; Yadav, P.; Tahir, M.; Saini, V. Implant Design and Stress Distribution. Int. J. Oral Implantol. Clin. Res. 2016, 7(2), 34–39. DOI: 10.5005/jp-journals-10012-1151.
  • De Santis, R.; Guarino, V.; Ambrosio, L. Composite Biomaterials for Bone Repair. Bone Repair Biomater. 2019, 273–299. DOI: 10.1016/B978-0-08-102451-5.00010-X.
  • Sathishkumar, T.; Satheeshkumar, S.; Naveen, J. Glass Fiber-Reinforced Polymer Composites – a Review. J. Reinf. Plast. Compos. 2014, 33(13), 1258–1275. DOI: 10.1177/0731684414530790.
  • Beckett, L. E.; Lewis, J. T.; Tonge, T. K.; Korley, L. T. J. Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement. ACS Biomater. Sci. Eng. 2020, 6(10), 5453–5473. DOI: https://doi.org/10.1021/acsbiomaterials.0c00911.
  • Lazar, M.-A.; Rotaru, H.; Bâldea, I.; Boşca, A. B.; Berce, C. P.; Prejmerean, C.; Prodan, D.; Câmpian, R. S. Evaluation of the Biocompatibility of New Fiber-Reinforced Composite Materials for Craniofacial Bone Reconstruction. J. Craniofac. Surg. 2016, 27(7), 1694–1699. DOI: https://doi.org/10.1097/SCS.0000000000002925.
  • Reis, J. M. L.; Chaves, F. L.; da Costa Mattos, H. S. Tensile Behaviour of Glass Fibre Reinforced Polyurethane at Different Strain Rates. Mater. Des. 2013, 49, 192–196. DOI: 10.1016/j.matdes.2013.01.065.
  • Boretos, J. W.; Pierce, W. S. Segmented Polyurethane: A New Elastomer for Biomedical Applications. Science. 1967, 158(3807), 1481–1482. DOI: 10.1126/science.158.3807.1481.
  • Da Costa, R. R. C.; De Medeiros, R.; Ribeiro, M. L.; Tita, V. Experimental and Numerical Analysis of Single Lap Bonded Joints: Epoxy and Castor Oil PU-Glass Fibre Composites. J. Adhes. 2017, 93, 77–94. DOI: 10.1080/00218464.2016.1172212.
  • Szczepańczyk, P.; Szlachta, M.; Złocista-Szewczyk, N.; Chłopek, J.; Pielichowska, K. Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers (Basel). 2021, 13(6), 946. DOI: 10.3390/polym13060946.
  • Tanzi, M. C.; Farè, S.; Petrini, P.; Tanini, A.; Piscitelli, E.; Zecchi-Orlandini, S.; Brandi, M. L. Cytocompatibility of Polyurethane Foams as Biointegrable Matrices for the Preparation of Scaffolds for Bone Reconstruction. J. Appl. Biomater. Biomech. 2003, 1(1), 58–66. DOI: 10.1177/228080000300100107.
  • Huang, Z. Stiffness and Strength Design of Composite Bone Plates. Compos. Sci. Technol. 2005, 65(1), 73–85. DOI: 10.1016/j.compscitech.2004.06.006.
  • Chohan, J. S.; Boparai, K. S.; Singh, R.; Hashmi, M. S. Manufacturing Techniques and Applications of Polymer Matrix Composites: A Brief Review. Adv. Mater. Process. Technol. 2020, 1–11. DOI: 10.1080/2374068X.2020.1835012.
  • Harper, C. A., and Petrie, E. M. Plastic Materials and Process. In Plastics Materials and Processes: A Concise Enciclopedia (Hoboken, New Jersey: John Wiley & Sons, Inc.,), 2003. DOI: 10.1002/0471459216.fmatter.
  • Asim, M.; Jawaid, M.; Saba, N.; Ramengmawii, Nasir, M.; Sultan, M. T. H. Processing of Hybrid Polymer Composites—a Review. Hybrid Polym. Compos. Mater. 2017. DOI: 10.1016/B978-0-08-100789-1.00001-0.
  • Fujihara, K.; Huang, Z.-M.; Ramakrishna, S.; Satknanantham, K.; Hamada, H. Performance Study of Braided Carbon/peek Composite Compression Bone Plates. Biomaterials. 2003, 24(15), 2661–2667. DOI: 10.1016/S0142-9612(03)00065-6.
  • Kabiri, A.; Liaghat, G.; Alavi, F.; Saidpour, H.; Hedayati, S. K.; Ansari, M.; Chizari, M. Glass Fiber/polypropylene Composites with Potential of Bone Fracture Fixation Plates: Manufacturing Process and Mechanical Characterization. J. Compos. Mater. 2020, 54(30), 4903–4919. DOI: https://doi.org/10.1177/0021998320940367.
  • Park, S.-W.; Yoo, S.-H.; An, S.-T.; Chang, S.-H. Material Characterization of Glass/polypropylene Composite Bone Plates According to the Forming Condition and Performance Evaluation Under a Simulated Human Body Environment. Compos. Part B Eng. 2012, 43(3), 1101–1108. DOI: https://doi.org/10.1016/j.compositesb.2011.09.008.
  • Al-Shammari, B.; Al-Fariss, T.; Al-Sewailm, F.; Elleithy, R. The Effect of Polymer Concentration and Temperature on the Rheological Behavior of Metallocene Linear Low Density Polyethylene (MLLDPE) Solutions. J. King Saud Univ. - Eng. Sci. 2011, 23(1). DOI: 10.1016/j.jksues.2010.07.001.
  • Biswal, T.; BadJena, S. K.; Pradhan, D. Synthesis of Polymer Composite Materials and Their Biomedical Applications. Mater. Today Proc. 2020, 30, 305–315. DOI: https://doi.org/10.1016/J.MATPR.2020.01.567.
  • Arumugam, S.; Kandasamy, J.; Md Shah, A. U.; Hameed Sultan, M. T.; Safri, S. N. A.; Abdul Majid, M. S.; Basri, A. A.; Mustapha, F. Investigations on the Mechanical Properties of Glass Fiber/sisal Fiber/chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications. Polymers (Basel). 2020, 12(7), 1501. DOI: 10.3390/polym12071501.
  • Frigg, R. Development of the Locking Compression Plate. Injury. 2003, 34, 6–10. DOI: 10.1016/j.injury.2003.09.020.
  • Thian, S. C. H.; Tang, Y.; Tan, W. K.; Fuh, J. Y. H.; Wong, Y. S.; Loh, H. T.; Lu, L. The Manufacture of Micromould and Microparts by Vacuum Casting. Int. J. Adv. Manuf. Technol. 2008, 38(9–10), 944–948. DOI: 10.1007/s00170-007-1151-4.
  • Tong, G. O., and Bavornratanavech, S. AO Manual of Fracture Management: Minimally Invasive Plate Osteosynthesis (MIPO), 1st ed.; Platz, D., Ed.; Davos, Switzerland: AO Publishing: Clavadelerstrasse, 2007.
  • Bonyár, A.; Sántha, H.; Varga, M.; Ring, B.; Vitéz, A.; Harsányi, G. Characterization of Rapid PDMS Casting Technique Utilizing Molding Forms Fabricated by 3D Rapid Prototyping Technology (RPT). Int. J. Mater. Form. 2014, 7(2), 189–196. DOI: 10.1007/s12289-012-1119-2.
  • International Organization for Standardization. ISO 9585:Implants for Surgery — Determination of Bending Strength and Stiffness of Bone Plates. 1990. https://www.iso.org/standard/17351.html
  • Berube, K. A.; Lopez-Anido, R. A.; Goupee, A. J. Determining the Flexural and Shear Moduli of Fiber-Reinforced Polymer Composites Using Three-Dimensional Digital Image Correlation. Exp. Tech. 2015, 40(4), 1263–1273. DOI: https://doi.org/10.1111/ext.12178.
  • Hibbeler, R. C., and Sekar, K. S. V. Mechanics of Materials; London: Pearson Education, 2013.
  • Caiti, G.; Dobbe, J. G. G.; Bervoets, E.; Beerens, M.; Strackee, S. D.; Strijkers, G. J.; Streekstra, G. J. Biomechanical Considerations in the Design of Patient-Specific Fixation Plates for the Distal Radius. Med. Biol. Eng. Comput. 2019, 57(5), 1099–1107. DOI: 10.1007/s11517-018-1945-6.
  • Chakladar, N. D.; Harper, L. T.; Parsons, A. J. Optimisation of Composite Bone Plates for Ulnar Transverse Fractures. J. Mech. Behav. Biomed. Mater. 2016, 57, 334–346. DOI: 10.1016/J.JMBBM.2016.01.029.
  • Schorler, H.; Wendlandt, R.; Jürgens, C.; Schulz, A.-P.; Kaddick, C.; Capanni, F. Bone Plate-Screw Constructs for Osteosynthesis – Recommendations for Standardized Mechanical Torsion and Bending Tests. Biomed. Eng./Biomed. Tech. 2018, 63(6). DOI: 10.1515/bmt-2017-0126.
  • Tayton, K.; Johnson-Nurse, C.; McKibbin, B.; Bradley, J.; Hastings, G. The Use of Semi-Rigid Carbon-Fibre-Reinforced Plastic Plates for Fixation of Human Fractures. Results of Preliminary Trials. J. Bone Joint Surg. Br. 1982, 64-B(1), 105–111. DOI: 10.1302/0301-620X.64B1.7040407.
  • Strom, A. M.; Garcia, T. C.; Jandrey, K.; Huber, M. L.; Stover, S. M. In vitro Mechanical Comparison of 2.0 and 2.4 Limited-Contact Dynamic Compression Plates and 2.0 Dynamic Compression Plates of Different Thicknesses. Vet. Surg. 2010, 39(7), 824–828. DOI: https://doi.org/10.1111/j.1532-950X.2010.00736.x.
  • Kim, S.-H.; Chang, S.-H.; Son, D.-S. Finite Element Analysis of the Effect of Bending Stiffness and Contact Condition of Composite Bone Plates with Simple Rectangular Cross-Section on the Bio-Mechanical Behaviour of Fractured Long Bones. Compos. Part B Eng. 2011, 42(6), 1731–1738. DOI: https://doi.org/10.1016/j.compositesb.2011.03.001.
  • Ramakrishna, K.; Sridhar, I.; Sivashanker, S.; Khong, K. S.; Ghista, D. N. Design of Fracture Fixation Plate for Necessary and Sufficient Bone Stress Shielding. JSME Int. J. 2004, 47, 1086–1094. DOI: https://doi.org/10.1299/jsmec.47.1086.
  • Lv, H.; Chang, W.; Yuwen, P.; Yang, N.; Yan, X.; Zhang, Y. Are There Too Many Screw Holes in Plates for Fracture Fixation? BMC Surg. 2017, 17(1), 46. DOI: 10.1186/s12893-017-0244-8.
  • Fernández-Pérez, J.; Cantero, J.; Díaz-Álvarez, J.; Miguélez, M. Hybrid Composite-Metal Stack Drilling with Different Minimum Quantity Lubrication Levels. Mater. (Basel). 2019, 12(3), 448. DOI: 10.3390/ma12030448.
  • Kuo, C. C.; Wang, Y. J.; Shi, Z. S. Development of a High Precision Silicone Rubber Mold for Cylinder Block. Appl. Mech. Mater. 2013, 459, 342–348. DOI: 10.4028/AMM.459.342.
  • Bhatt, A. T.; Gohil, P. P.; Chaudhary, V. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends. IOP Conf. Ser Mater. Sci. Eng. 2018, 330, 012107. DOI: https://doi.org/10.1088/1757-899X/330/1/012107.
  • Cadore-Rodrigues, A. C.; Guilardi, L. F.; Wandscher, V. F.; Pereira, G. K. R.; Valandro, L. F.; Rippe, M. P. Surface Treatments of a Glass-Fiber Reinforced Composite: Effect on the Adhesion to a Composite Resin. J. Prosthodont. Res. 2020, 64(3), 301–306. DOI: 10.1016/j.jpor.2019.09.001.
  • Court-Brown, C. M.; Heckman, J. D.; McQueen, M. M.; Ricci, W. M.; Tornetta, P., and McKee, M. D. Rockwood and Green’s Fractures in Adults;Rockwood and Green’s Fractures in Adults; Philadelphia: Wolters Kluwer Health, 2015.
  • Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K. W. Biomedical Applications of Polymer-Composite Materials: A Review. Compos. Sci. Technol. 2001, 61(9), 1189–1224. DOI: https://doi.org/10.1016/S0266-3538(00)00241-4.
  • Mehboob, A.; Chang, S.-H. Effect of Composite Bone Plates on Callus Generation and Healing of Fractured Tibia with Different Screw Configurations. Compos. Sci. Technol. 2018, 167, 96–105. DOI: https://doi.org/10.1016/j.compscitech.2018.07.039.
  • Sika. Product Datasheet: SikaForce®-7710 L100, SikaForce. 2012 https://prt.sika.com/dms/getdocument.get/596171ed-ac85-3274-b893-1ee164a36355/SikaForce_7710_L_100-pt-02.2012.pdf
  • Bauccio, M. ASM Engineered Materials Reference Book, 2nd.; London: ASM InternationalMaterials Park, OH: 1994;
  • Baharnezhad, S.; Farhangi, H.; Allahyari, A. A. Influence of Geometry and Design Parameters on Flexural Behavior of Dynamic Compression Plates (Dcp): Experiment and Finite Element Analysis. J. Mech. Med. Biol. 2013, 13(3), 1350032. DOI: https://doi.org/10.1142/S0219519413500322.
  • Fouda, N.; Mostafa, R.; Saker, A. Numerical Study of Stress Shielding Reduction at Fractured Bone Using Metallic and Composite Bone-Plate Models. Ain Shams Eng. J. 2019, 10(3), 481–488. DOI: https://doi.org/10.1016/J.ASEJ.2018.12.005.
  • Banoriya, D.; Purohit, R.; Dwivedi, R. K. Study of Particle Dispersion on One Bed Hospital Using Computational Fluid Dynamics. Mater. Today Proc. 2017, 4(2), 10074–10079. DOI: https://doi.org/10.1016/j.matpr.2017.02.244.
  • . Kehl. Product Datasheet: Aglomerante Kehl Ag101. KehlIndustry. 2021, http://www.kehl.ind.br/catalogos/KEHL_-_Aglomerante_1.pdf
  • da Silva, E. H. P.; Almendro, E. B.; da Silva, A. A. X.; Waldow, G.; Sales, F. C. P.; de Moura, A. P.; da Costa, R. R. C. Manufacture and Mechanical Behavior of Green Polymeric Composite Reinforced with Hydrated Cotton Fiber. J. Exp. Tech. Instrum. 2019, 2, 1. DOI: 10.30609/JETI.2019-7576.
  • Clayton, C. R. Materials Science and Engineering: An Introduction, Wiley: Chichester, West Sussex, 1987; Vol. 94. DOI: 10.1016/0025-5416(87)90343-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.