173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of HT on energy absorption in CLS compression process

, , &
Pages 228-234 | Received 24 Feb 2022, Accepted 21 Apr 2022, Published online: 10 May 2022

References

  • Yang, R.; Wang, D. M.; Du, S. N. Effect of Relative Humidity on Main Resonance Frequency for Paper Honeycomb Packaging System. 2021 IOP Conf. Ser.: Earth Environ. Sci. Guangzhou, China. Jan 22-25, 2021, 697(1), 012033 (6pp). DOI:10.1088/1755-1315/697/1/012033
  • Xia, Z. L.; Xiao, Z. J. Protection Scheme for Foreign Trade Packaging of Automobile Lamps with Hard Paper Cards in Ocean Transportation. J. Coastal Res. 2020, 110(sp1), 24–28. DOI: 10.2112/JCR-SI110-006.1.
  • Lu, F. D.; Hua, G. J.; Wang, L. S.; Jiang, H. Y.; Gao, D. A Phenomenological Constitutive Modelling of Polyethylene Foam Under Multiple Impact Conditions. Packag. Technol. Sci. 2019, 32(7), 367–379. DOI: 10.1002/pts.2445.
  • Lin, Y. L.; Zhang, Z. F.; Chen, R.; Li, Y.; Wen, X. J.; Lu, F. Y. Cushioning and Energy Absorbing Property of Combined Aluminum Honeycomb. Adv. Eng. Mater. 2015, 17(10), 1434–1441. DOI: 10.1002/adem.201400574.
  • Khan, M. K.; Baig, T.; Mirza, S. Experimental Investigation of In-Plane and Out-Of-Plane Crushing of Aluminum Honeycomb. Mater. Sci. Eng. A. 2012, 539, 135–142. DOI: 10.1016/j.msea.2012.01.070.
  • Guo, Y. F.; Becker, W.; Xu, W. C. Vertical Static Compression Performance of Honeycomb Paperboard. Int. J. Mater. Res. 2013, 104(6), 598–602. DOI: 10.3139/146.110896.
  • Wang, Z. W.; Yu-Ping, E. Energy-Absorbing Properties of Paper Honeycombs Under Low and Intermediate Strain Rates. Packag. Technol. Sci. 2012, 25(3), 173–185. DOI: 10.1002/pts.973.
  • Wang, D. M.; Liang, N.; Guo, Y. F. Finite Element Analysis on the Out-Of-Plane Compression for Paper Honeycomb. J. Strain Anal. Eng. Des. 2019, 54(1), 36–43. DOI: 10.1177/0309324718812527.
  • Meran, A. P.; Toprak, T.; Muǧan, A. Numerical and Experimental Study of Crashworthiness Parameters of Honeycomb Structures. Thin-Walled Struct. 2014, 78, 87–94. DOI: 10.1016/j.tws.2013.12.012.
  • Wang, Z.; Lu, Z. Experimental Assessment on Energy Absorption Property of Aluminum Honeycomb Under Out-Of-Plane Compression. J. Cent. South Univ. (Engl. Ed.). 2013, 44(3), 1246–1251. DOI: 10.1088/0143-0807/34/6/1439.
  • Crupi, V.; Epasto, G.; Guglielmino, E. Comparison of Aluminium Sandwiches for Lightweight Ship Structures: Honeycomb Vs. Foam. Foam. Mar. Struct. 2013, 30, 74–96. DOI: 10.1016/j.marstruc.2012.11.002.
  • Castiglioni, A.; Castellani, L.; Cuder, G.; Comba, S. Relevant Materials Parameters in Cushioning for EPS Foams. Colloids Surf. a Physicochem. Eng. Asp. 2017, 534, 71–77. DOI: 10.1016/j.colsurfa.2017.03.049.
  • Alia, R.; Guan, Z.; Umer, R.; Cantwell, W. The Energy-Absorbing Properties of Internally Reinforced Composite-Metal Cylinders with Various Diameter-To-Thickness Ratios. J. Reinf. Plast. Compos. 2015, 34(9), 731–741. DOI: 10.1177/0731684415579213.
  • Zhao, J. H.; Wang, J. F.; Liu, T.; Yang, N.; Duan, W. J.; He, Z. Q. Experimental Analyses on Energy Absorption Property of Aluminum Honeycomb Under Out-Of-Plane Compression. Appl. Mech. Mater. 2015, 778, 18–23. DOI: 10.4028/scientific.net/amm.778.18.
  • Guo, Y. F.; Ji, M. J.; Fu, Y. G.; Pan, D.; Wang, X. N.; Kang, J. F. Cushioning Energy Absorption of Composite Layered Structures Including Paper Corrugation, Paper Honeycomb and Expandable Polyethylene. J. Strain Anal. Eng. Des. 2019, 54(3), 176–191. DOI: 10.1177/0309324719847069.
  • Yang, D.; Zhang, Z.; Chen, X.; Han, X.; Xu, T.; Li, X.; Ding, J.; Liu, H.; Xia, X.; Gao, Y., et al. Quasi-Static Compression Deformation and Energy Absorption Characteristics of Basalt Fiber-Containing Closed-Cell Aluminum Foam. Met.2020, 10(7), 921. DOI: 10.3390/met10070921.
  • Wu, L. W.; Zhang, X. F.; Ban, J. Y.; Jiang, Q.; Li, T. T.; Lin, J. H.; Tang, Y. H. Design and Optimization of Multi-Scale Porous Sandwich Composites with Excellent Sound Absorption and Cushioning Properties. J. Sandwich Struct. Mater. 2021, 23(8), 4276–4293. DOI: 10.1177/1099636221993903.
  • Chen, Z. T.; Zhao, H.; Yang, Y. Z. Bending Behavior of Ethylene Vinyl Acetate Modified Engineered Cementitious Composite Under Drop Weight Impact Testing. Key Eng. Mater. 2020, 853, 150–156. DOI: 10.4028/scientific.net/KEM.853.150.
  • Tang, H.; Liu, C.; Wang, N.; Li, H.; Zeng, M. Influence of Acidic Substances on Compression Deformation Characteristics of Loess. Adv. Civ. Eng. 2021, 6, 1–12. DOI: 10.1155/2021/6614391.
  • Feng, Y.; Liu, Y.; Ding, Z.; Chen, J.; Mao, X. Study on Deformation Characteristics of Fractures in Different Directions with Constant Volume Boundary Conditions. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), IEEE, Shenyang, China, Jan 22-24, 2021; pp. 652–655. DOI: 10.1109/ICPECA51329.2021.9362645
  • Zhu, H. Q.; Fang, S. H.; Zhang, Y. L.; Wu, Y.; Guo, J. L.; Li, F. Numerical Simulation of the Dynamic Distribution Characteristics of the Stress, Strain and Energy of Coal Mass Under Impact Loads. Sci. Rep. 2020, 10, 16849. DOI: 10.1038/s41598-020-74063-3.
  • Satake, M. Powders and Grains 2001. Stress and Strain in Granular Materials; CRC Press: Boca Raton, FL, 2001; pp. 149–152.
  • Shen, M. Y.; Chiou, Y. C.; Tan, C. M.; Wu, C. C.; Chen, W. J. Effect of Wall Thickness on Stress-Strain Response and Buckling Behavior of Hollow-Cylinder Rubber Fenders. Mater. 2020, 13(5), 1170. DOI: 10.3390/ma13051170.
  • Niu, X.; Qin, R. X.; Lu, Y. Z.; Chen, B. Z. Energy Absorption Behaviors of Laser Additive Manufactured Aluminium Alloy Thin-Walled Tube Tailored by Heat Treatment. Mater. Trans. 2021, 62(2), 278–283. DOI: 10.2320/matertrans.MT-M2020271.
  • Zhang, H. A Numerical Study on the Impact Response and Energy Absorption of Thin-wall Tubes with Different Geometries. Ph.D. Dissertation, Wayne State University, Detroit, Mich., U.S.A, 2005
  • Samadi, S. H.; Ghobadian, B.; Nosrati, M. Prediction of Higher Heating Value of Biomass Materials Based on Proximate Analysis Using Gradient Boosted Regression Trees Method. Energy Sources Part A. 2021, 43(6), 672–681. DOI: 10.1080/15567036.2019.1630521.
  • Yadav, V. K.; Kumar, P.; Dvivedi, A. Effect of Tool Rotation in Near-Dry EDM Process on Machining Characteristics of HSS. Mater. Manuf. Processes. 2019, 34(7), 779–790. DOI: 10.1080/10426914.2019.1605171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.