436
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of post processing on the micro-machinability of selective laser melted AlSi10Mg: an experimental investigation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 516-528 | Received 19 Jan 2022, Accepted 05 May 2022, Published online: 23 May 2022

References

  • Ming, W.; Dang, J.; An, Q.; Chen, M. Chip Formation and Hole Quality in Dry Drilling Additive Manufactured Ti6al4v. Mater. Manuf. Process. 2020, 35(1), 43–51. DOI: 10.1080/10426914.2019.1692353.
  • Raj, B. A.; Jappes, J. T. W.; Khan, M. A.; Dillibabu, V.; Brintha, N. C. Direct Metal Laser Sintered (DMLS) Process to Develop Inconel 718 Alloy for Turbine Engine Components. Optik. 2020, 202, 163735. DOI: 10.1016/j.ijleo.2019.163735.
  • Cao, X.; Wallace, W.; Poon, C.; Immarigeon, J. P. Research and Progress in Laser Welding of Wrought Aluminum Alloys. I. Laser Welding Processes. Mater. Manuf. Process. 2003, 18(1), 1–22. DOI: 10.1081/AMP-120017586.
  • Srinivasan, A.; Pillai, U. T. S.; John, V.; Pai, B. C. Low-Pressure Casting of LM25 (Al-7si-0.3 Mg) Aluminium Alloy. Mater. Manuf. Process. 2005, 20(2), 221–230. DOI: 10.1081/AMP-200041867.
  • Aboulkhair, N. T.; Everitt, N. M.; Ashcroft, I.; Tuck, C. Reducing Porosity in AlSi10mg Parts Processed by Selective Laser Melting. Addit. Manuf. 2014, 1-4, 77–86. DOI: 10.1016/j.addma.2014.08.001.
  • Calignano, F.; Manfredi, D.; Ambrosio, E. P.; Iuliano, L.; Fino, P. Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS. Int. J. Adv. Manuf. 2013, 67(9–12), 2743–2751. DOI: 10.1007/s00170-012-4688-9.
  • Zhang, D.; Cai, Q.; Liu, J. Formation of Nanocrystalline Tungsten by Selective Laser Melting of Tungsten Powder. Mater. Manuf. Process. 2012, 27(12), 1267–1270. DOI: 10.1080/10426914.2012.663119.
  • Gatta, D. R.; Sol, I. D.; Caraviello, A.; Astarita, A. Selective Laser Melting of an Al-Si-Mg-Cu Alloy: Feasibility and Processing Aspects. Mater. Manuf. Process. 2021, 36(12), 1438–1449. DOI: 10.1080/10426914.2021.1906900.
  • Davidson, K. P.; Littlefair, G.; Singamneni, S. On the Machinability of Selective Laser Melted Duplex Stainless Steels. Mater. Manuf. Process. 2021, 1–17. DOI: 10.1080/10426914.2021.2001513.
  • Sagbas, B. Post-Processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10mg Parts. Met. Mater. Int. 2020, 26(1), 143–153. DOI: 10.1007/s12540-019-00375-3.
  • Li, B. Q.; Li, Z.; Bai, P.; Liu, B.; Kuai, Z. Research on Surface Roughness of AlSi10mg Parts Fabricated by Laser Powder Bed Fusion. J. Met. 2018, 8(7), 524. DOI: 10.3390/met8070524.
  • Struzikiewicz, G.; Sioma, A. Evaluation of Surface Roughness and Defect Formation After the Machining of Sintered Aluminum Alloy AlSi10mg. J. Mater. 2020, 13(7), 46–62. DOI: 10.3390/ma13071662.
  • Dong, Z.; Liu, Y.; Li, W.; Liang, J. Orientation Dependency for Microstructure, Geometric Accuracy and Mechanical Properties of Selective Laser Melting AlSi10mg Lattices. J. Alloys Compd. 2019, 791, 490–500. DOI: 10.1016/j.jallcom.2019.03.344.
  • Bian, P.; Yin, E.; Bao, B. The Relation of the Uniformity of Composition and the Mainly Mechanical Properties of AlSi10mg by Microanalysis in SLM. J. Phys.Conf. Ser. 2019, 1213, 052028. DOI: 10.1088/1742-6596/1213/5/052028.
  • Segebade, E.; Gerstenmeyer, M.; Dietrich, S.; Zanger, F.; Schulze, V. Influence of Anisotropy of Additively Manufactured AlSi10mg Parts on Chip Formation During Orthogonal Cutting. Procedia. CIRP. 2019, 82, 113–118. DOI: 10.1016/j.procir.2019.04.043.
  • Aboulkhair, N. T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N. M. The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10mg: The Effect of a Conventional T6-Like Heat Treatment. Mater. Sci. Eng. A. 2016, 667, 139–146. DOI: 10.1016/j.msea.2016.04.092.
  • Raghavan, S.; Zhang, B.; Wang, P.; Sun, C. N.; Nai, M. L. S.; Li, T.; Wei, J. Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy. Mater. Manuf. Process. 2017, 32(14), 1588–1595. DOI: 10.1080/10426914.2016.1257805.
  • Salmi, A.; Atzeni, E.; Iuliano, L.; Galati, M. Experimental Analysis of Residual Stresses on AlSi10mg Parts Produced by Means of Selective Laser Melting (SLM). Procedia CIRP. 2017, 62, 458–463. DOI: 10.1016/j.procir.2016.06.030.
  • Uzan, N. E.; Shneck, R.; Yeheskel, O.; Frage, N. High-Temperature Mechanical Properties of AlSi10mg Specimens Fabricated by Additive Manufacturing Using Selective Laser Melting Technologies (AM-SLM). Addit. Manuf. 2018, 24, 257–263. DOI: 10.1016/j.addma.2018.09.033.
  • Larrosa, N. O.; Wang, W.; Read, N.; Loretto, M. H.; Evans, C.; Carr, J.; Tradowsky, U.; Attallah, M. M.; Withers, P. J. Linking Microstructure and Processing Defects to Mechanical Properties of Selectively Laser Melted AlSi10mg Alloy. Theor. Appl. Fract. Mech. 2018, 98, 123–133. DOI: 10.1016/j.tafmec.2018.09.011.
  • Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of Heat Treatment on AlSi10mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism. Mater. Sci. Eng. A. 2016, 663, 116–125. DOI: 10.1016/j.msea.2016.03.088.
  • Maamoun, A. H.; Elbestawi, M.; Dosbaeva, G. K.; Veldhuis, S. C. Thermal Post-Processing of AlSi10mg Parts Produced by Selective Laser Melting Using Recycled Powder. Addit. Manuf. 2018, 21, 234–247. DOI: 10.1016/j.addma.2018.03.014.
  • Cerri, E.; Ghio, E.; Bolelli, G. Effect of the Distance from Build Platform and Post-Heat Treatment of AlSi10mg Alloy Manufactured by Single- and Multi-Laser Selective Laser Melting. J. Mater. Eng. Perform. 2021, 30(7), 4981–4992. DOI: 10.1007/s11665-021-05577-8.
  • Słodki, B.; Zębala, W.; Struzikiewicz, G. Correlation Between Cutting Data Selection and Chip Form in Stainless Steel Turning. Mach. Sci. Technol. 2015, 19(2), 217–235. DOI: 10.1080/10910344.2015.1018530.
  • Kumar, S. P. L. Measurement and Uncertainty Analysis of Surface Roughness and Material Removal Rate in Micro Turning Operation and Process Parameters Optimization. Measurement. 2019, 140, 538–547. DOI: 10.1016/j.measurement.2019.04.029.
  • Fratila, D.; Caizar, C. Investigation of the Influence of Process Parameters and Cooling Method on the Surface Quality of AISI-1045 During Turning. Mater. Manuf. Process. 2012, 27, 1123–1128. DOI: 10.1080/10426914.2012.677905.
  • Fan, Y. H.; Hao, Z. P.; Lin, J. Q.; Yu, Z. X. Material Response at Tool-Chip Interface and Its Effects on Tool Wear in Turning Inconel718. Mater. Manuf. Process. 2014, 29(11–12), 1446–1452. DOI: 10.1080/10426914.2014.921701.
  • Silva, T. E. F.; Amaral, A.; Couto, A.; Coelho, J.; Reis, A.; Rosa, P. A. R.; de Jesus, A. M. Comparison of the Machinability of the 316L and 18ni300 Additively Manufactured Steels Based on Turning Tests. Proc. Inst. Mech. Eng. L. 2021, 235(10), 1–20. DOI: 10.1177/14644207211014906.
  • Cardoso, P.; Davim, J. P. Optimization of Surface Roughness in Micromilling. Mater. Manuf. Process. 2010, 25(10), 1115–1119. DOI: 10.1080/10426914.2010.481002.
  • Durairaj, M.; Gowri, S. Parametric Optimization for Improved Tool Life and Surface Finish in Micro Turning Using Genetic Algorithm. Procedia. Eng. 2013, 64, 878–887. DOI: 10.1016/j.proeng.2013.09.164.
  • Rao, R. V.; Kalyankar, V. D. Multi-Pass Turning Process Parameter Optimization Using Teaching-Learning-Based Optimization Algorithm. Sci. Iran. 2013, 20(3), 967–974. DOI: 10.1016/j.scient.2013.01.002.
  • Zimmermann, M.; Müller, D.; Kirsch, B.; Greco, S.; Aurich, J. C. Analysis of the Machinability When Milling AlSi10mg Additively Manufactured via Laser-Based Powder Bed Fusion. Int. J. Adv. Manuf. 2021, 112, 989–1005. DOI: 10.1007/s00170-020-06391-7.
  • Elias, J. V.; Venkatesh, N. P.; Lawrence, K. D.; Mathew, J. Tool Texturing for Micro-Turning Applications–an Approach Using Mechanical Micro Indentation. Mater. Manuf. Process. 2021, 36(1), 84–93. DOI: 10.1080/10426914.2020.1813899.
  • George, A.; Kuriachen, B.; Dhanish, P. B.; Mathew, J. Experimental Investigations into the Influence of AlSi-10mg Soft Tool Coating on the Machinability of Ti6al4v. Mater. Manuf. Process. 2021, 1–11. 10.1080/10426914.2021.1981934.
  • Sahu, T. S.; George, A.; Kuriachen, B.; Mathew, J.; Dhanish, P. B. Experimental Investigations on the Wear Behaviour of Micro-EDM-Fabricated Textured Tools During Dry Turning of Ti6al4v. Ind. Lubr. Tribol. 2022, 74(1), 26–33. DOI: 10.1108/ILT-06-2021-0233.
  • Mahesh, K.; Philip, J. T.; Joshi, S. N.; Kuriachen, B. Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures. Mater. Manuf. Process. 2021, 36(7), 753–791. DOI: 10.1080/10426914.2020.1843671.
  • Anand, K. N.; Mathew, J. Size Effect and Micro Endmilling Performance While Sustainable Machining on Inconel 718. Mater. Manuf. Process. 2021, 36(6), 668–676. DOI: 10.1080/10426914.2020.1854465.
  • Song, B.; Zhao, X.; Li, S.; Han, C.; Wei, Q.; Wen, S.; Liu, J.; Shi, Y. Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: A Review. Front. Mech. Eng. 2015, 10(2), 111–125. DOI: 10.1007/s11465-015-0341-2.
  • Amini, S.; Khakbaz, H.; Barani, A. Improvement of Near-Dry Machining and Its Effect on Tool Wear in Turning of AISI 4142. Mater. Manuf. Process. 2015, 30(2), 241–247. DOI: 10.1080/10426914.2014.952029.
  • Ramesh, S.; Karunamoorthy, L.; Palanikumar, K. Surface Roughness Analysis in Machining of Titanium Alloy. Mater. Manuf. Process. 2008, 23(2), 174–181. DOI: 10.1080/10426910701774700.
  • Mumtaz, K.; Hopkinson, N. Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting. Rapid Prototyp. J. 2009, 15(2), 96–103. DOI: 10.1108/13552540910943397.
  • Lakshmanan, S.; Kumar, M. P.; Dhananchezian, M.; Yuvaraj, N. Investigation of Monolayer Coated WC Inserts on Turning Ti-Alloy. Mater. Manuf. Process. 2020, 35(7), 826–835. DOI: 10.1080/10426914.2020.1711930.
  • Tan, R.; Zhao, X.; Zhang, S.; Zou, X.; Guo, S.; Hu, Z.; Sun, T. Study on Ultra-Precision Processing of Ti-6al-4V with Different Ultrasonic Vibration-Assisted Cutting Modes. Mater. Manuf. Process. 2019, 34(12), 1380–1388. DOI: 10.1080/10426914.2019.1660788.
  • Bejaxhin, B. H.; Balamurugan, G. M.; Sivagami, S. M.; Ramkumar, K.; Vijayan, V.; Rajkumar, S. Tribological Behavior and Analysis on Surface Roughness of CNC Milled Dual Heat Treated Al6061 Composites. Adv. Mater. Sci. Eng. 2021, 2021. DOI: 10.1155/2021/3844194.
  • Dhobe, M. M.; Chopde, I. K.; Gogte, C. L. Investigations on Surface Characteristics of Heat Treated Tool Steel After Wire Electro-Discharge Machining. Mater. Manuf. Process. 2013, 28(10), 1143–1146. DOI: 10.1080/10426914.2013.822976.
  • Sanusi, K. O.; Akinlabi, E. T. Experiment on Effect of Heat Treatment on Mechanical and Microstructure Properties of AISI Steel. Mater. Today Proc. 2018, 5(9), 17996–18001. DOI: 10.1016/j.matpr.2018.06.132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.